Citation: | LIU Jing-sen, YANG Jie, LI Yu. Hybrid evolutionary JAYA algorithm for global and engineering optimization problems[J]. Chinese Journal of Engineering, 2023, 45(3): 431-445. doi: 10.13374/j.issn2095-9389.2021.10.27.002 |
[1] |
Kennedy J, Eberhart R. Particle swarm optimization // Proceedings of ICNN'95 - International Conference on Neural Networks. Perth, 1995: 1942
|
[2] |
Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput, 2004, 8(3): 256 doi: 10.1109/TEVC.2004.826067
|
[3] |
Mirjalili S. SCA: A sine cosine algorithm for solving optimization problems. Knowl Based Syst, 2016, 96: 120 doi: 10.1016/j.knosys.2015.12.022
|
[4] |
劉小娟, 王聯國. 一種基于差分進化的正弦余弦算法. 工程科學學報, 2020, 42(12):1674
Liu X J, Wang L G. A sine cosine algorithm based on differential evolution. Chin J Eng, 2020, 42(12): 1674
|
[5] |
Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw, 2016, 95: 51 doi: 10.1016/j.advengsoft.2016.01.008
|
[6] |
Azizi M. Atomic orbital search: A novel metaheuristic algorithm. Appl Math Model, 2021, 93: 657 doi: 10.1016/j.apm.2020.12.021
|
[7] |
Kar D, Ghosh M, Guha R, et al. Fuzzy mutation embedded hybrids of gravitational search and Particle Swarm Optimization methods for engineering design problems. Eng Appl Artif Intell, 2020, 95: 103847 doi: 10.1016/j.engappai.2020.103847
|
[8] |
劉三陽, 靳安釗. 求解約束優化問題的協同進化教與學優化算法. 自動化學報, 2018, 44(9):1690
Liu S Y, Jin A Z. A co-evolutionary teaching-learning-based optimization algorithm for constrained optimization problems. Acta Autom Sin, 2018, 44(9): 1690
|
[9] |
Banaie-Dezfouli M, Nadimi-Shahraki M H, Beheshti Z. R-GWO: Representative-based grey wolf optimizer for solving engineering problems. Appl Soft Comput, 2021, 106: 107328 doi: 10.1016/j.asoc.2021.107328
|
[10] |
肖子雅, 劉升. 精英反向黃金正弦鯨魚算法及其工程優化研究. 電子學報, 2019, 47(10):2177 doi: 10.3969/j.issn.0372-2112.2019.10.020
Xiao Z Y, Liu S. Study on elite opposition-based golden-sine whale optimization algorithm and its application of project optimization. Acta Electron Sin, 2019, 47(10): 2177 doi: 10.3969/j.issn.0372-2112.2019.10.020
|
[11] |
Nadimi-Shahraki M H, Taghian S, Mirjalili S. An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl, 2021, 166: 113917 doi: 10.1016/j.eswa.2020.113917
|
[12] |
汪逸暉, 高亮. 烏鴉搜索算法的改進及其在工程約束優化問題中的應用. 計算機集成制造系統, 2021, 27(7):1871
Wang Y H, Gao L. Improvement of crow search algorithm and its application in engineering constrained optimization problems. Comput Integr Manuf Syst, 2021, 27(7): 1871
|
[13] |
Rao R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Industrial Eng Comput, 2016, 7(1): 19
|
[14] |
Yu K J, Liang J J, Qu B Y, et al. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers Manag, 2017, 150: 742 doi: 10.1016/j.enconman.2017.08.063
|
[15] |
Kang F, Li J J, Dai J H. Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms. Adv Eng Softw, 2019, 131: 60 doi: 10.1016/j.advengsoft.2019.03.003
|
[16] |
Ingle K K, Jatoth D R K. An efficient JAYA algorithm with lévy flight for non-linear channel equalization. Expert Syst Appl, 2020, 145: 112970 doi: 10.1016/j.eswa.2019.112970
|
[17] |
Iacca G, Junior V C S, Melo V V. An improved Jaya optimization algorithm with Lévy flight. Expert Syst Appl, 2021, 165: 113902 doi: 10.1016/j.eswa.2020.113902
|
[18] |
Zhao F Q, Ma R, Wang L. A self-learning discrete jaya algorithm for multiobjective energy-efficient distributed no-idle flow-shop scheduling problem in heterogeneous factory system. IEEE Trans Cybern, 6181, PP(99): 1
|
[19] |
Kang F, Wu Y R, Li J J, et al. Dynamic parameter inverse analysis of concrete dams based on Jaya algorithm with Gaussian processes surrogate model. Adv Eng Inform, 2021, 49: 101348 doi: 10.1016/j.aei.2021.101348
|
[20] |
Zhang Y Y, Chi A N, Mirjalili S. Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering design problems. Knowl Based Syst, 2021, 233: 107555 doi: 10.1016/j.knosys.2021.107555
|
[21] |
Nayak D R, Zhang Y D, Das D S, et al. MJaya-ELM: A Jaya algorithm with mutation and extreme learning machine based approach for sensorineural hearing loss detection. Appl Soft Comput, 2019, 83: 105626 doi: 10.1016/j.asoc.2019.105626
|
[22] |
Zhang Y Y, Ma M D, Jin Z G. Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models. Energy, 2020, 211: 118644 doi: 10.1016/j.energy.2020.118644
|
[23] |
Zhang Y Y, Jin Z G. Comprehensive learning Jaya algorithm for engineering design optimization problems. J Intell Manuf, 2021: 1
|
[24] |
劉景森, 馬義想, 李煜. 改進蝴蝶算法求解多維復雜函數優化問題. 電子學報, 2021, 49(6):1068 doi: 10.12263/DZXB.20200148
Liu J S, Ma Y X, Li Y. Improved butterfly algorithm for multi-dimensional complex function optimization problem. Acta Electron Sin, 2021, 49(6): 1068 doi: 10.12263/DZXB.20200148
|
[25] |
Liu J S, Mao Y N, Liu X Z, et al. A dynamic adaptive firefly algorithm with globally orientation. Math Comput Simul, 2020, 174: 76 doi: 10.1016/j.matcom.2020.02.020
|
[26] |
Wu G, Mallipeddi R, Suganthan P N. Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization [EB/OL]. Technical Repore Online (2017-09) [2021-10-27]. https://www.researchgate.net/profile/Guohua-Wu-5/publication/317228117_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2017_Competition_and_Special_Session_on_Constrained_Single_Objective_Real-Parameter_Optimization/links/5982cdbaa6fdcc8b56f59104/Problem-Definitions-and-Evaluation-Criteria-for-the-CEC-2017-Competition-and-Special-Session-on-Constrained-Single-Objective-Real-Parameter-Optimization.pdf
|
[27] |
Aydilek ? B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl Soft Comput, 2018, 66: 232 doi: 10.1016/j.asoc.2018.02.025
|
[28] |
Derrac J, García S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput, 2011, 1(1): 3 doi: 10.1016/j.swevo.2011.02.002
|
[29] |
Kumar A, Wu G H, Ali M Z, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol Comput, 2020, 56: 100693 doi: 10.1016/j.swevo.2020.100693
|
[30] |
Li Y, Zhao Y R, Liu J S. Dimension by dimension dynamic sine cosine algorithm for global optimization problems. Appl Soft Comput, 2021, 98: 106933 doi: 10.1016/j.asoc.2020.106933
|
[31] |
Salgotra R, Singh U, Singh S, et al. Self-adaptive salp swarm algorithm for engineering optimization problems. Appl Math Model, 2021, 89: 188 doi: 10.1016/j.apm.2020.08.014
|
[32] |
劉景森, 馬義想, 李煜. 改進鯨魚算法求解工程設計優化問題. 計算機集成制造系統, 2021, 27(7):1884
Liu J S, Ma Y X, Li Y. Improved whale algorithm for solving engineering design optimization problems. Comput Integr Manuf Syst, 2021, 27(7): 1884
|