• Volume 44 Issue 7
    Jul.  2022
    Turn off MathJax
    Article Contents
    NA Qing, WANG Yong. Research on the mathematical relationship between mud height and underflow concentration of deep cone thickener based on effective stress[J]. Chinese Journal of Engineering, 2022, 44(7): 1126-1133. doi: 10.13374/j.issn2095-9389.2021.12.16.005
    Citation: NA Qing, WANG Yong. Research on the mathematical relationship between mud height and underflow concentration of deep cone thickener based on effective stress[J]. Chinese Journal of Engineering, 2022, 44(7): 1126-1133. doi: 10.13374/j.issn2095-9389.2021.12.16.005

    Research on the mathematical relationship between mud height and underflow concentration of deep cone thickener based on effective stress

    doi: 10.13374/j.issn2095-9389.2021.12.16.005
    More Information
    • Corresponding author: E-mail: wangyong8551@126.com
    • Received Date: 2021-12-16
      Available Online: 2022-03-09
    • Publish Date: 2022-07-01
    • Low grade is one of the three characteristics of mineral resources in China. With the exploitation of a large number of mineral resources, more tailings will inevitably be produced in the concentrator, and transporting them to the goaf is the best way to deal with tailings. The tailings are compacted by a deep cone thickener (DCT) to prepare a paste. The mud height and underflow concentration are the key parameters to ensure the filling efficiency and quality. To explore the relationship between mud height and underflow concentration of the DCT, mathematical models of mud height and underflow concentration under different conditions were established based on the Terzaghi effective stress principle and the relationship between compressibility $ \alpha $ and mud pressure. Taking a mine as an example, the industrial application and difference analysis of the mathematical model are conducted. Results show that the relationship between mud height and underflow concentration is a power function. When $ \alpha $ is constant, dh/dc decreases gradually with the increase of mud height, and the underflow concentration reaches 100% when the mud height is 29.4 m, which is inconsistent with reality. When $ \alpha $ varies, dh/dc increases gradually with the increase of mud height, and the mud layer becomes difficult to compress. This model is consistent with reality. Moreover, for this mine, the mud height is 5.79 m when the underflow concentration of the DCT increases from 60% to 65% and 11.22 m when the underflow concentration increases from 70% to 75%; the mud height required by the latter is approximately 1.94 times that of the former. The physical significance of the mathematical model is that the effective stress and intergranular porosity vary at different mud heights. As the height of the upper mud layer increases, the tailings particles at the bottom are rearranged and combined under pressure, the water between the pores is discharged, and the particles are compressed more densely. That is, the higher the mud height is, the smaller the intergranular porosity and the higher the underflow concentration. Notably, the mathematical model is applicable to both dynamic and static operations of the DCT from two perspectives, that is, compaction mechanism and effective stress; however, it cannot be generalized. Finally, according to the mathematical model expression and practical application, the mud layer in the DCT is divided into mixed sedimentation, deceleration compression, and limit compression areas.

       

    • loading
    • [1]
      王勇, 吳愛祥, 王洪江, 等. 全尾膏體動態壓密特性及其數學模型. 巖土力學, 2014, 35(增刊2): 168

      Wang Y, Wu A X, Wang H J, et al. Dynamic thickening characteristics and mathematical model of total tailings. Rock Soil Mech, 2014, 35(Suppl 2): 168
      [2]
      Cihangir F, Ercikdi B, Kesimal A, et al. Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties. Miner Eng, 2015, 83: 117 doi: 10.1016/j.mineng.2015.08.022
      [3]
      Yilmaz E, Benzaazoua M, Bussière B, et al. Influence of disposal configurations on hydrogeological behaviour of sulphidic paste tailings: A field experimental study. Int J Miner Process, 2014, 131: 12 doi: 10.1016/j.minpro.2014.08.004
      [4]
      陳華君, 劉全軍. 金屬礦山固體廢物危害及資源化處理. 金屬礦山, 2009(4):154 doi: 10.3321/j.issn:1001-1250.2009.04.043

      Chen H J, Liu Q J. Harms and resource-like treatment of the solid wastes from metal mines. Met Mine, 2009(4): 154 doi: 10.3321/j.issn:1001-1250.2009.04.043
      [5]
      王洪江, 彭青松, 楊瑩, 等. 金屬礦尾砂濃密技術研究現狀與展望. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2021.01.11.001

      Wang H J, Peng Q S. Yang Y, et al. Research status and prospect of thickening technology for metal tailings. Chinese J Chin Eng,https://doi.org/10.13374/j.issn2095-9389.2021.01.11.001
      [6]
      Tao D, Parekh B K, Zhao Y M, et al. Pilot-scale demonstration of deep cone? paste thickening process for phosphatic clay/sand disposal. Sep Sci Technol, 2010, 45(10): 1418 doi: 10.1080/01496391003652783
      [7]
      劉曉輝, 吳愛祥, 王洪江, 等. 膏體充填尾礦濃密規律初探. 金屬礦山, 2009(9):38 doi: 10.3321/j.issn:1001-1250.2009.09.007

      Liu X H, Wu A X, Wang H J, et al. A primary discussion on the thickening law of paste-filling. Met Mine, 2009(9): 38 doi: 10.3321/j.issn:1001-1250.2009.09.007
      [8]
      谷志君. 最大型深錐膏體濃密機在中國銅鉬礦山的應用. 黃金, 2010, 31(11):43 doi: 10.3969/j.issn.1001-1277.2010.11.012

      Gu Z J. Application of the biggest deep cone paste thickener in domestic copper-molybdenum mine. Gold, 2010, 31(11): 43 doi: 10.3969/j.issn.1001-1277.2010.11.012
      [9]
      Farrow J B, Johnston R R M, Simic K, et al. Consolidation and aggregate densification during gravity thickening. Chem Eng J, 2000, 80(1-3): 141 doi: 10.1016/S1383-5866(00)00083-6
      [10]
      周旭, 金曉剛, 劉培正, 等. 基于動態濃密試驗的深錐濃密機底流濃度預測模型. 金屬礦山, 2017(12):39 doi: 10.3969/j.issn.1001-1250.2017.12.008

      Zhou X, Jin X G, Liu P Z, et al. Prediction model for underflow concentration of deep cone thickener based on dynamic thickening experimentation. Met Mine, 2017(12): 39 doi: 10.3969/j.issn.1001-1250.2017.12.008
      [11]
      Wang H, Liu T, Cao Y N, et al. Underflow concentration prediction model of deep-cone thickener based on data-driven. J China Univ Posts Telecommun, 2019, 26(6): 63
      [12]
      Fang C Y, He D K, Li K, et al. Image-based thickener mud layer height prediction with attention mechanism-based CNN. ISA Trans,https://doi.org/10.1016/j.isatra.2021.11.004
      [13]
      王勇, 王洪江, 吳愛祥. 基于高徑比的深錐濃密機底流濃度數學模型. 武漢理工大學學報, 2011, 33(8):113 doi: 10.3963/j.issn.1671-4431.2011.08.025

      Wang Y, Wang H J, Wu A X. Mathematical model of deep cone thickener underflow concentration based on the height to diameter ratio. J Wuhan Univ Technol, 2011, 33(8): 113 doi: 10.3963/j.issn.1671-4431.2011.08.025
      [14]
      吳愛祥, 楊瑩, 王貽明, 等. 深錐濃密機底流濃度模型及動態壓密機理分析. 工程科學學報, 2018, 40(2):152

      Wu A X, Yang Y, Wang Y M, et al. Mathematical modelling of underflow concentration in a deep cone thickener and analysis of the dynamic compaction mechanism. Chin J Eng, 2018, 40(2): 152
      [15]
      王新民, 張國慶, 趙建文, 等. 深錐濃密機底流濃度預測與外部結構參數優化. 重慶大學學報, 2015, 38(6):1 doi: 10.11835/j.issn.1000-582X.2015.06.001

      Wang X M, Zhang G Q, Zhao J W, et al. Underflow concentration prediction and external structure parameter optimization of deep cone thickener. J Chongqing Univ, 2015, 38(6): 1 doi: 10.11835/j.issn.1000-582X.2015.06.001
      [16]
      Du J H, Mcloughlin R, Smart R S C. Improving thickener bed density by ultrasonic treatment. Int J Miner Process, 2014, 133: 91 doi: 10.1016/j.minpro.2014.10.003
      [17]
      Jiao H Z, Wu Y C, Wang H, et al. Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener. Miner Eng, 2021, 173: 107043 doi: 10.1016/j.mineng.2021.107043
      [18]
      Hunter T N, Usher S P, Biggs S, et al. Characterization of bed densification in a laboratory scale thickener, by novel application of an acoustic backscatter system. Procedia Eng, 2015, 102: 858 doi: 10.1016/j.proeng.2015.01.206
      [19]
      邵龍潭, 郭曉霞, 鄭國鋒. 粒間應力、土骨架應力和有效應力. 巖土工程學報, 2015, 37(8):1478 doi: 10.11779/CJGE201508017

      Shao L T, Guo X X, Zheng G F. Intergranular stress, soil skeleton stress and effective stress. Chin J Geotech Eng, 2015, 37(8): 1478 doi: 10.11779/CJGE201508017
      [20]
      李廣信. 論土骨架與滲透力. 巖土工程學報, 2016, 38(8):1522 doi: 10.11779/CJGE201608021

      Li G X. On soil skeleton and seepage force. Chin J Geotech Eng, 2016, 38(8): 1522 doi: 10.11779/CJGE201608021
      [21]
      路德春, 杜修力, 許成順. 有效應力原理解析. 巖土工程學報, 2013, 35(增刊1): 146

      Lu D C, Du X L, Xu C S. Analytical solutions to principle of effective stress. Chin J Geotech Eng, 2013, 35(Suppl 1): 146
      [22]
      楊晶. 黃土狀壓實填土壓縮和強度特性研究[學位論文] 太原: 太原理工大學, 2014

      Yang J. Study on Compression and Strength Properties of Compacted Loess-Like Backfill [Dissertation]. Taiyuan: Taiyuan University of Technology, 2014
      [23]
      湛含輝, 楊小生, 蔡明華. 濃密機中壓縮過程及其有關計算. 金屬礦山, 1989(11):45

      Zhan H H, Yang X S, Cai M H. Compression process and related calculation in thickener. Met Mine, 1989(11): 45
      [24]
      方永倫, 任建偉, 李亞平, 等. 開封地區土的壓縮系數和孔隙比的經驗關系. 黃河水利職業技術學院學報, 2004, 16(1):43 doi: 10.3969/j.issn.1008-486X.2004.01.016

      Fang Y L, Ren J W, Li Y P, et al. Empirical relationship between compression coefficient and pore ratio of soil in Kaifeng area. J Yellow River Cnserv Tech Inst, 2004, 16(1): 43 doi: 10.3969/j.issn.1008-486X.2004.01.016
      [25]
      王洪江, 王勇, 吳愛祥等. 細粒全尾動態壓密與靜態壓密機理. 北京科技大學學報, 2013, 35(5):566

      Wang H J, Wang Y, Wu A X, et al. Dynamic compaction and static compaction mechanism of fine unclassified tailings. J Univ Sci Technol Beijing, 2013, 35(5): 566
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(5)  / Tables(2)

      Article views (567) PDF downloads(29) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看