• Volume 45 Issue 11
    Nov.  2023
    Turn off MathJax
    Article Contents
    MA Yunfei, LI Qing, ZHANG Jianliang, LIU Zhengjian, GUO Feng, WANG Yaozu. Synergistic optimization model of sintering ore allocation cost and energy consumption based on PSO–VIKOR[J]. Chinese Journal of Engineering, 2023, 45(11): 1868-1877. doi: 10.13374/j.issn2095-9389.2022.08.30.004
    Citation: MA Yunfei, LI Qing, ZHANG Jianliang, LIU Zhengjian, GUO Feng, WANG Yaozu. Synergistic optimization model of sintering ore allocation cost and energy consumption based on PSO–VIKOR[J]. Chinese Journal of Engineering, 2023, 45(11): 1868-1877. doi: 10.13374/j.issn2095-9389.2022.08.30.004

    Synergistic optimization model of sintering ore allocation cost and energy consumption based on PSO–VIKOR

    doi: 10.13374/j.issn2095-9389.2022.08.30.004
    More Information
    • Corresponding author: E-mail: yaozuwang@ustb.edu.cn
    • Received Date: 2022-08-30
      Available Online: 2023-03-28
    • Publish Date: 2023-11-01
    • As one of the major energy-consuming processes in steel production, sintering accounts for approximately 10% of the total energy consumption of steel production. The energy consumed in the sintering process is mainly attributed to solid fuels. Additionally, in traditional sintering, optimized ore–fuel ratio is usually determined by experience, which fails to achieve a dynamic balance between raw material type and sintering process combustion consumption. In this study, we first analyze the complex physicochemical reaction processes, such as the decomposition of crystalline water, combustion of solid fuels, and oxidation and reduction of iron oxides in the sintering process, to understand the energy flow of the sintering process. We then set empirical parameters according to an actual sintering site, and we finally establish a sintering energy–mass balance model. Subsequently, the sintering energy balance constraint is embedded on the basis of the existing constraints of chemical composition, alkalinity, raw material ratio, etc. Additionally, the cost of sintering raw material is taken as the optimization target, after which a sintering batching model based on sintering energy balance is constructed; the penalty function method is used to transform the constrained problem into an unconstrained one; finally, the actual furnace charge structure of a certain steel plant is solved by using the particle swarm algorithm (PSO) to realize completely automatic dosing of sintering iron ore, flux and fuel. The simulation results show that the optimized sintering ore allocation based on the proposed PSO algorithm-led optimal sintering ore allocation model results in a suitable fuel ratio and increased energy efficiency of the sintering process. The optimal sintering ore allocation method is a compromise of various conflicting objectives; therefore, the solved ore allocation scheme is taken as the object, and the four indicators TFe, cost, S content, and solid fuel usage are integrated; additionally, the weights of each indicator are objectively obtained by using the entropy weight method according to the dispersion degree of data and information entropy of each indicator, under the principle of considering the balance of group benefit maximization and individual regret minimization. The VIKOR (Multicriteria optimization and compromise solution) method is used for compromise ranking and preference of the scheme. The final results confirm that the proposed PSO–VIKOR sintering ore allocation optimization model achieves energy saving and emission reduction in the sintering process while considering the sintering cost and quality, which is expected to help in low-carbon green development and sustainable evolution of sintering in iron and steel enterprises and achieve the double carbon target.

       

    • loading
    • [1]
      王新東, 上官方欽, 邢奕, 等. “雙碳”目標下鋼鐵企業低碳發展的技術路徑. 工程科學學報, 2023, 45(5):853

      Wang X D, Shangguan F Q, Xing Y, et al. Research on the low-carbon development technology route of iron and steel enterprises under the “double carbon” target. Chin J Eng, 2023, 45(5): 853
      [2]
      張建良, 劉征建, 焦克新, 等. 煉鐵新技術及基礎理論研究進展. 工程科學學報, 2021, 43(12):1630

      Zhang J L, Liu Z J, Jiao K X, et al. Progress of new technologies and fundamental theory about ironmaking. Chin J Eng, 2021, 43(12): 1630
      [3]
      Cheng Z L, Wang J Y, Wei S S, et al. Optimization of gaseous fuel injection for saving energy consumption and improving imbalance of heat distribution in iron ore sintering. Appl Energy, 2017, 207: 230 doi: 10.1016/j.apenergy.2017.06.024
      [4]
      李新創, 劉建輝, 范鐵軍, 等. 鋼鐵企業節能低碳指標體系建立及應用. 北京, 冶金工業規劃研究院, 2018

      Li X C, Liu J H, Fan T J, et al. Establishment and Application of Energy-Saving and Low-Carbon Index System For Iron and Steel Enterprises. Beijing, Institute of Metallurgical Industry Planning, 2018
      [5]
      孟建忠, 黨榮富. 燒結熱平衡與節能降耗. 燒結球團, 1998(1):18

      Meng J Z, Dang R F. Sintering thermo-balance and energy saving. Sinter Pelletizing, 1998(1): 18
      [6]
      Manojlovi? V, Kamberovi? ?, Kora? M, et al. Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters. Appl Energy, 2022, 307: 118209 doi: 10.1016/j.apenergy.2021.118209
      [7]
      Liu C X, Xie Z H, Sun F R, et al. Optimization for sintering proportioning based on energy value. Appl Therm Eng, 2016, 103: 1087 doi: 10.1016/j.applthermaleng.2016.04.158
      [8]
      Wu M, Ma J J, Hu J, et al. Optimization of coke ratio for the second proportioning phase in a sintering process base on a model of temperature field of material layer. Neurocomputing, 2018, 275: 10 doi: 10.1016/j.neucom.2017.05.003
      [9]
      馬俊杰, 吳敏, 李勇. 燒結配料過程焦粉最低配比計算方法. 化工學報, 2012, 63(9):2688 doi: 10.3969/j.issn.0438-1157.2012.09.003

      Ma J J, Wu M, Li Y. Minimal coke consumption calculating method. CIESC J, 2012, 63(9): 2688 doi: 10.3969/j.issn.0438-1157.2012.09.003
      [10]
      潘禹竹. 基于燒結基礎特性的鐵礦粉燒結優化配礦研究[學位論文]. 沈陽:東北大學, 2020

      Pan Y Z. Research on Optimization of Iron ore Blending Based on Basic Sintering Characteristics [Dissertation]. Shenyang: Northeastern University, 2020
      [11]
      張國成, 羅果萍, 柴軼凡, 等. 褐鐵礦在燒結工藝中的優化配置. 工程科學學報, 2022, 44(1):39 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201004

      Zhang G C, Luo G P, Chai Y F, et al. Optimal allocation of limonite in sintering process. Chin J Eng, 2022, 44(1): 39 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201004
      [12]
      陳健, 楊春節, 胡兵, 等. 基于XGBoost和反向自適應粒子群的燒結配料智能優化方法. 冶金自動化, 2023, 47(3):71

      Chen J, Yang C J, Hu B, et al. Optimization of sinter batching based on intelligent method of XGBoost and reverse adaptive population particle swarm optimization. Metall Ind Autom, 2023, 47(3): 71
      [13]
      翁思浩, 包向軍, 陳光, 等. 基于人工智能的燒結配礦系統研究現狀//第十一屆全國能源與熱工學術年會. 馬鞍山, 2021:297

      Weng S H, Bao X J, Chen G, et al. Research status of sintering distribution system based on artificial intelligence // The 11th Annual National Energy and Thermal Engineering Conference. Ma'anshan, 2021: 297
      [14]
      孫俊波, 楊明, 韓子文. 鞍鋼鲅魚圈燒結低成本配礦生產實踐. 鞍鋼技術, 2015(3):36 doi: 10.3969/j.issn.1006-4613.2015.03.009

      Sun J B, Yang M, Han Z W. Production practice of ore blending by low cost sintering in Bayuquan branch of angang. Angang Technol, 2015(3): 36 doi: 10.3969/j.issn.1006-4613.2015.03.009
      [15]
      武曉婧. 燒結配礦優化模型及燒結礦質量預測研究[學位論文]. 石家莊:河北經貿大學, 2020

      Wu X J. The Research on Sintering Ore Optimization Model and Sinter Quality Prediction [Dissertation]. Shijiazhuang: Hebei University of Economics and Business, 2020
      [16]
      劉含宇. 基于. NET的鐵礦選配系統設計與實現[學位論文]. 馬鞍山:安徽工業大學, 2019

      Liu H Y. Design and Implementation of Iron Ore Matching System Based on . NET [Dissertation]. Ma’anshan: Anhui Universit of Technology, 2019
      [17]
      李勇, 吳敏, 曹衛華, 等. 基于線性規劃和遺傳–粒子群算法的燒結配料多目標綜合優化方法. 控制理論與應用, 2011, 28(12):1740

      Li Y, Wu M, Cao W H, et al. A multi-objective optimization algorithm for sintering proportion based on linear programming and genetic algorithm particle swam optimization. Contr Theory Appl, 2011, 28(12): 1740
      [18]
      Shen X, Chen L G, Xia S J, et al. Iron ores matching analysis and optimization for iron-making system by taking energy consumption, CO2 emission or cost minimization as the objective. Sci China Technol Sci, 2017, 60(11): 1625 doi: 10.1007/s11431-017-9072-9
      [19]
      馮茜, 李擎, 王耀祖, 等. 約束多目標粒子群算法在燒結配礦優化中的應用. 控制理論與應用, 2022, 39(5):923

      Feng Q, Li Q, Wang Y Z, et al. Application of constrained multi-objective particle swarm optimization to sinter proportioning optimization. Contr Theory Appl, 2022, 39(5): 923
      [20]
      Li K J, Zhang J L, Liu Z J, et al. Optimization model coupling both chemical compositions and high-temperature characteristics of sintering materials for sintering burden. Int J Miner Metall Mater, 2014, 21(3): 216 doi: 10.1007/s12613-014-0888-7
      [21]
      Wang J K, Qiao F, Zhao F, et al. A data-driven model for energy consumption in the sintering process. J Manuf Sci Eng, 2016, 138(10): 101001 doi: 10.1115/1.4033661
      [22]
      Yang S P, Liu H J, Sun H X, et al. Study on influencing factors of high-temperature basic characteristics of iron ore powder and optimization of ore blending. Materials, 2022, 15(9): 3329 doi: 10.3390/ma15093329
      [23]
      許斌. 鐵礦石均熱燒結基礎與技術研究[學位論文]. 長沙:中南大學, 2012

      Xu B. Research on Fundamental and Technology of Heat-Homogenizing Sintering of Iron Ores [Dissertation]. Changsha: Central South University, 2012
      [24]
      王海東, 余海釗, 范曉慧, 等. 鐵礦燒結過程能耗數學模型的研究進展. 鋼鐵, 2018, 53(10):1

      Wang H D, Yu H Z, Fan X H, et al. Progress in research on mathematical model of energy consumption of iron ore sintering process. Iron Steel, 2018, 53(10): 1
      [25]
      Mitterlehner J, Loeffler G, Winter F, et al. Modeling and simulation of heat front propagation in the iron ore sintering process. ISIJ Int, 2004, 44(1): 11 doi: 10.2355/isijinternational.44.11
      [26]
      伍鐵斌, 朱紅求, 龍文, 等. 改進的鯨魚優化算法及其在燒結配料中的應用. 中南大學學報(自然科學版), 2020, 51(1):103

      Wu T B, Zhu H Q, Long W, et al. Improved whale optimization algorithm and its application in sintering blending process. J Cent South Univ (Sci Technol), 2020, 51(1): 103
      [27]
      楊雙平, 孫海興, 張甜甜, 等. 低硅礦燒結高溫基礎特性及優化配礦研究. 鋼鐵研究學報, https://doi.org/10.13228/j.boyuan.issn1001-0963.20220246

      Yang S P, Sun H X, Zhang T T, et al. Study on high-temperature basic characteristics of low-silica ore sintering and optimal ore allocation. J Iron Steel Res, https://doi.org/10.13228/j.boyuan.issn1001-0963.20220246
      [28]
      Gao Q J, Wang H, Pan X Y, et al. A forecast model of the sinter tumble strength in iron ore fines sintering process. Powder Technol, 2021, 390: 256 doi: 10.1016/j.powtec.2021.05.063
      [29]
      Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm // 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. Orlando, 2002: 4104
      [30]
      Mirjalili S. Evolutionary Algorithms and Neural Networks. Germany: Springer, 2019
      [31]
      Bertsimas D, Tsitsiklis J. Simulated annealing. Statist Sci, 1993, 8(1): 10
      [32]
      Mardani A, Zavadskas E K, Govindan K, et al. VIKOR technique: A systematic review of the state of the art literature on methodologies and applications. Sustainability, 2016, 8(1): 37 doi: 10.3390/su8010037
      [33]
      Li Z P, Fan X H, Chen G, et al. Optimization of iron ore sintering process based on ELM model and multi-criteria evaluation. Neural Comput & Applic, 2017, 28(8): 2247
      [34]
      Sahu A K, Mahapatra S S, Chatterjee S. Optimization of electro-discharge coating process using harmony search. Mater Today, 2018, 5(5): 12673 doi: 10.1016/j.matpr.2018.02.251
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(5)  / Tables(8)

      Article views (329) PDF downloads(60) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看