Citation: | LI Ruru, WANG Kaiyi, MI Shian, LIU Yaping, CHEN Ze, YIN Xitao, MA Xiaoguang. Research progress of H2S sensors based on metal oxide semiconductor nanomaterials with one-dimensional structures[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.11.001 |
[1] |
El-Shaheny R, Belal F, El-Shabrawy Y, et al. Nanostructures-based sensing strategies for hydrogen sulfide. Trends Environ Anal Chem, 2021, 31: e00133 doi: 10.1016/j.teac.2021.e00133
|
[2] |
Chu X F, Jiang D L, Guo Y, et al. Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method. Sens Actuat B, 2006, 120(1): 177 doi: 10.1016/j.snb.2006.02.008
|
[3] |
Katoch A, Choi S W, Kim J H, et al. Importance of the nanograin size on the H2S-sensing properties of ZnO–CuO composite nanofibers. Sens Actuat B, 2015, 214: 111 doi: 10.1016/j.snb.2015.03.012
|
[4] |
Greene L E, Law M, Tan D H, et al. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett, 2005, 5(7): 1231 doi: 10.1021/nl050788p
|
[5] |
Mirzaei A, Kim J H, Kim H W, et al. How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature. Sens Actuat B, 2018, 258: 270 doi: 10.1016/j.snb.2017.11.066
|
[6] |
Miao J S, Chen C, Lin J Y S. Humidity independent hydrogen sulfide sensing response achieved with monolayer film of CuO nanosheets. Sens Actuat B, 2020, 309: 127785 doi: 10.1016/j.snb.2020.127785
|
[7] |
Li S H, Xie L L, He M, et al. Metal-Organic frameworks-derived bamboo-like CuO/In2O3 Heterostructure for high-performance H2S gas sensor with Low operating temperature. Sens Actuat B, 2020, 310: 127828 doi: 10.1016/j.snb.2020.127828
|
[8] |
Lee J H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens Actuat B, 2009, 140(1): 319 doi: 10.1016/j.snb.2009.04.026
|
[9] |
Wei Q L, Xiong F Y, Tan S S, et al. Energy storage: Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage (adv. mater. 20/2017). Adv Mater, 2017, 29(20): 1602300 doi: 10.1002/adma.201602300
|
[10] |
Liang H W, Liu J W, Qian H S, et al. Multiplex templating process in one-dimensional nanoscale: Controllable synthesis, macroscopic assemblies, and applications. Acc Chem Res, 2013, 46(7): 1450 doi: 10.1021/ar300272m
|
[11] |
He Y L, Liu Q, Li Q, et al. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review. Int J Heat Mass Transf, 2019, 129: 160 doi: 10.1016/j.ijheatmasstransfer.2018.08.135
|
[12] |
Niu C J, Meng J S, Wang X P, et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun, 2015, 6: 7402 doi: 10.1038/ncomms8402
|
[13] |
Yu F, Tang D S, Hai K, et al. Fabrication of SnO2 one-dimensional nanosturctures with graded diameters by chemical vapor deposition method. J Cryst Growth, 2010, 312(2): 220 doi: 10.1016/j.jcrysgro.2009.10.052
|
[14] |
Han H E, Huang Z P, Lee W. Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today, 2014, 9(3): 271 doi: 10.1016/j.nantod.2014.04.013
|
[15] |
Bag A, Lee N E. Gas sensing with heterostructures based on two-dimensional nanostructured materials: A review. J Mater Chem C, 2019, 7: 13367 doi: 10.1039/C9TC04132J
|
[16] |
Kim H J, Lee J H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens Actuat B, 2014, 192: 607 doi: 10.1016/j.snb.2013.11.005
|
[17] |
Ding W, Ansari N, Yang Y H, et al. Superiorly sensitive and selective H2 sensor based on p-n heterojunction of WO3-CoO nanohybrids and its sensing mechanism. Int J Hydrog Energy, 2021, 46(56): 28823 doi: 10.1016/j.ijhydene.2021.06.070
|
[18] |
Barsan N, Weimar U. Conduction model of metal oxide gas sensors. J Electroceram, 2001, 7: 143 doi: 10.1023/A:1014405811371
|
[19] |
Mirzaei A, Kim S S, Kim H W. Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. J Hazard Mater, 2018, 357: 314 doi: 10.1016/j.jhazmat.2018.06.015
|
[20] |
Yamazoe N. New approaches for improving semiconductor gas sensors. Sens Actuat B, 1991, 5(1-4): 7 doi: 10.1016/0925-4005(91)80213-4
|
[21] |
Ma J H, Ren Y A, Zhou X R, et al. Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: Gas sensing performance and mechanism study. Adv Funct Mater, 2018, 28(6): 1705268 doi: 10.1002/adfm.201705268
|
[22] |
Yuasa M, Masaki T, Kida T, et al. Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor. Sens Actuat B, 2009, 136(1): 99 doi: 10.1016/j.snb.2008.11.022
|
[23] |
Yao X Y, Zhao J B, Liu J R, et al. H2S sensing material Pt–WO3 nanorods with excellent comprehensive performance. J Alloys Compd, 2022, 900: 163398 doi: 10.1016/j.jallcom.2021.163398
|
[24] |
Shao F, Hoffmann M W G, Prades J D, et al. Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sens Actuat B, 2013, 181: 130 doi: 10.1016/j.snb.2013.01.067
|
[25] |
Karnati P, Akbar S, Morris P A. Conduction mechanisms in one dimensional core–shell nanostructures for gas sensing: A review. Sens Actuat B, 2019, 295: 127 doi: 10.1016/j.snb.2019.05.049
|
[26] |
Balouria V, Kumar A, Samanta S, et al. Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sens Actuat B, 2013, 181: 471 doi: 10.1016/j.snb.2013.02.013
|
[27] |
Chen Y, Xu P C, Xu T, et al. ZnO-nanowire size effect induced ultra-high sensing response to ppb-level H2S. Sens Actuat B, 2017, 240: 264 doi: 10.1016/j.snb.2016.08.120
|
[28] |
Asadzadeh M Z, K?ck A, Popov M, et al. Response modeling of single SnO2 nanowire gas sensors. Sens Actuat B, 2019, 295: 22 doi: 10.1016/j.snb.2019.05.041
|
[29] |
Khan R, Ra H W, Kim J T, et al. Nanojunction effects in multiple ZnO nanowire gas sensor. Sens Actuat B, 2010, 150(1): 389 doi: 10.1016/j.snb.2010.06.052
|
[30] |
Liu Y P, Zhu L Y, Feng P, et al. Bimetallic AuPt alloy nanoparticles decorated on ZnO nanowires towards efficient and selective H2S gas sensing. Sens Actuat B, 2022, 367: 132024 doi: 10.1016/j.snb.2022.132024
|
[31] |
Guo L L, Xie N, Wang C, et al. Enhanced hydrogen sulfide sensing properties of Pt-functionalized α-Fe2O3 nanowires prepared by one-step electrospinning. Sens Actuat B, 2018, 255: 1015 doi: 10.1016/j.snb.2017.07.055
|
[32] |
Yang J H, Yuan K P, Zhu L Y, et al. Facile synthesis of α-Fe2O3/ZnO core–shell nanowires for enhanced H2S sensing. Sens Actuat B, 2020, 307: 127617 doi: 10.1016/j.snb.2019.127617
|
[33] |
Wang L W, Kang Y F, Liu X H, et al. ZnO nanorod gas sensor for ethanol detection. Sens Actuat B, 2012, 162(1): 237 doi: 10.1016/j.snb.2011.12.073
|
[34] |
Height M J, M?dler L, Pratsinis S E, et al. Nanorods of ZnO made by flame spray pyrolysis. Chem Mater, 2006, 18(2): 572 doi: 10.1021/cm052163y
|
[35] |
Kruefu V, Wisitsoraat A, Tuantranont A, et al. Ultra-sensitive H2S sensors based on hydrothermal/im-pregnation-made Ru-functionalized WO3 nanorods. Sens Actuat B, 2015, 215: 630 doi: 10.1016/j.snb.2015.03.037
|
[36] |
Zhang Y, Chang J N, Wang Y. Mechanism analysis of PtPd-decorated hexagonal WO3 nanorods for H2S sensing application with ppt-level detection limit. J Alloys Compd, 2022, 892: 162133 doi: 10.1016/j.jallcom.2021.162133
|
[37] |
Hieu N M, Van Lam D, Hien T T, et al. ZnTe-coated ZnO nanorods: Hydrogen sulfide nano-sensor purely controlled by pn junction. Mater Des, 2020, 191: 108628 doi: 10.1016/j.matdes.2020.108628
|
[38] |
Abideen Z U, Kim J H, Lee J H, et al. Electrospun metal oxide composite nanofibers gas sensors: A review. J Korean Ceram Soc, 2017, 54(5): 366 doi: 10.4191/kcers.2017.54.5.12
|
[39] |
Abideen Z U, Katoch A, Kim J H, et al. Excellent gas detection of ZnO nanofibers by loading with reduced graphene oxide nanosheets. Sens Actuat B, 2015, 221: 1499 doi: 10.1016/j.snb.2015.07.120
|
[40] |
Arafat M M, Dinan B, Akbar S A, et al. Gas sensors based on one dimensional nanostructured metal-oxides: A review. Sensors, 2012, 12(6): 7207 doi: 10.3390/s120607207
|
[41] |
Thenmozhi S, Dharmaraj N, Kadirvelu K, et al. Electrospun nanofibers: New generation materials for advanced applications. Mater Sci Eng B, 2017, 217: 36 doi: 10.1016/j.mseb.2017.01.001
|
[42] |
Choi S W, Katoch A, Zhang J, et al. Electrospun nanofibers of CuO–SnO2 nanocomposite as semiconductor gas sensors for H2S detection. Sens Actuat B, 2013, 176: 585 doi: 10.1016/j.snb.2012.09.035
|
[43] |
Zhao Y, He X L, Li J P, et al. Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties. Sens Actuat B, 2012, 165(1): 82 doi: 10.1016/j.snb.2012.02.020
|
[44] |
Lu Z R, Zhou Q, Wang C S, et al. Electrospun ZnO–SnO2 composite nanofibers and enhanced sensing properties to SF6 decomposition byproduct H2S. Front Chem, 2018, 6: 540 doi: 10.3389/fchem.2018.00540
|
[45] |
Han C H, Li X W, Shao C L, et al. Composition-controllable p-CuO/n-ZnO hollow nanofibers for high-performance H2S detection. Sens Actuat B, 2019, 285: 495 doi: 10.1016/j.snb.2019.01.077
|
[46] |
Van Hoang N, Hung C M, Hoa N D, et al. Excellent detection of H2S gas at ppb concentrations using ZnFe2O4 nanofibers loaded with reduced graphene oxide. Sens Actuat B, 2019, 282: 876 doi: 10.1016/j.snb.2018.11.157
|
[47] |
Devan R S, Patil R A, Lin J H, et al. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv Funct Mater, 2012, 22(16): 3326 doi: 10.1002/adfm.201201008
|
[48] |
Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem, 2007, 17(15): 1451 doi: 10.1039/b701168g
|
[49] |
Park K R, Cho H B, Lee J M, et al. Design of highly porous SnO2–CuO nanotubes for enhancing H2S gas sensor performance. Sens Actuat B, 2020, 302: 127179 doi: 10.1016/j.snb.2019.127179
|
[50] |
Xu L, Zheng R F, Liu S H, et al. NiO@ZnO heterostructured nanotubes: Coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. Inorg Chem, 2012, 51(14): 7733 doi: 10.1021/ic300749a
|