• Turn off MathJax
    Article Contents
    YAN Chengming, XUE Chengpeng, TIAN Guangyuan, YANG Zhihao, LIU Xiaoguang, WANG Junsheng. Review of the stereolithographic 3D printing of metals[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.25.004
    Citation: YAN Chengming, XUE Chengpeng, TIAN Guangyuan, YANG Zhihao, LIU Xiaoguang, WANG Junsheng. Review of the stereolithographic 3D printing of metals[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.25.004

    Review of the stereolithographic 3D printing of metals

    doi: 10.13374/j.issn2095-9389.2022.10.25.004
    More Information
    • Stereolithographic three-dimensional (3D) printing of metals is a new additive manufacturing technology. The metal parts prepared by this technology have the characteristics of complex shape and precise structure, and no post-processing is required. It is an advanced manufacturing technology that has enormous potential in fabricating complex parts owing to the considerable progress of stereolithography, digital light processing, liquid crystal displays, continuous liquid interface production, and two-photon polymerization in recent years. This paper summarizes the current research progress on stereolithographic 3D printing of metals and defines four major methodologies, namely, curing sintering, curing coating, mixed curing, and curing mold. Of these, the curing sintering method is the primary technique to prepare metal parts by mixing metal powder with photosensitive resin and forming parts through degreasing and sintering at high temperatures. In curing coating, a metal film is coated on the surface of a solidified resin matrix, which is often used to prepare precision electromagnetic equipment. The mixed curing process is used to directly cure metal slurry without sintering to complete the one-step formation of parts. The curing mold technique is used to realize the multistep formation of parts by using the resin matrix or the ceramic matrix as the mold, followed by subsequent treatments such as casting. In this review, the composition of metal slurry and the resulting properties of the stereolithographic 3D printed metal parts are summarized. Key scientific questions on the property difference between metals and polymer in the slurry, immature processing parameters, lack of reliable compositions for photosensitive resin are still unresolved. The direction of future development is forecasted by studying on the influence of process parameters on the performance of parts, on the new formulas of photosensitive resin, and on more suitable equipment for the stereolithographic 3D printing of metals.

       

    • loading
    • [1]
      Standard ASTM. F2792-09 Standard Terminology for Additive Manufacturing Technologies. West Conshohocken: ASTM International, 2009
      [2]
      Frazier W E. Metal additive manufacturing: A review. J Mater Eng Perform, 2014, 23(6): 1917 doi: 10.1007/s11665-014-0958-z
      [3]
      Wong K V, Hernandez A. A review of additive manufacturing. Int Sch Res Notices, 2012, 2012: 1 doi: 10.1093/imrn/rnr003
      [4]
      Huang S H, Liu P, Mokasdar A, et al. Additive manufacturing and its societal impact: A literature review. Int J Adv Manuf Technol, 2013, 67(5): 1191
      [5]
      Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: A critical review. Int J Adv Manuf Technol, 2016, 83(1): 389
      [6]
      Vyavahare S, Teraiya S, Panghal D, et al. Fused deposition modelling: A review. Rapid Prototyp J, 2020, 26(1): 176 doi: 10.1108/RPJ-04-2019-0106
      [7]
      Kumar S. Selective laser sintering: A qualitative and objective approach. JOM, 2003, 55(10): 43 doi: 10.1007/s11837-003-0175-y
      [8]
      Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: Materials and applications. Appl Phys Rev, 2015, 2(4): 041101 doi: 10.1063/1.4935926
      [9]
      Melchels F P W, Feijen J, Grijpma D W. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24): 6121 doi: 10.1016/j.biomaterials.2010.04.050
      [10]
      Ziaee M, Crane N B. Binder jetting: A review of process, materials, and methods. Addit Manuf, 2019, 28: 781
      [11]
      Kruth J P, Mercelis P, Van Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J, 2005, 11(1): 26 doi: 10.1108/13552540510573365
      [12]
      Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: A review. Mater Des, 2021, 209: 110008 doi: 10.1016/j.matdes.2021.110008
      [13]
      B?ckin D, Tillman A M. Environmental assessment of additive manufacturing in the automotive industry. J Clean Prod, 2019, 226: 977 doi: 10.1016/j.jclepro.2019.04.086
      [14]
      Vishnukumar M, Pramod R, Kannan A R. Wire arc additive manufacturing for repairing aluminium structures in marine applications. Mater Lett, 2021, 299: 130112 doi: 10.1016/j.matlet.2021.130112
      [15]
      柏關順, 韓日宏, 明珠, 等. 金屬增材制造技術在武器裝備的應用和發展. 兵器材料科學與工程, 2021, 44(6):135 doi: 10.14024/j.cnki.1004-244x.20211025.002

      Bai G S, Han R H, Ming Z, et al. Applications and prospects of metal additive manufacturing technique in military component. Ordnance Mater Sci Eng, 2021, 44(6): 135 doi: 10.14024/j.cnki.1004-244x.20211025.002
      [16]
      Sun K, Wei T S, Ahn B Y, et al. 3D printing of interdigitated Li‐Ion microbattery architectures. Adv Mater, 2013, 25(33): 4539 doi: 10.1002/adma.201301036
      [17]
      Haleem A, Javaid M. 3D printed medical parts with different materials using additive manufacturing. Clin Epidemiol Glob Heath, 2020, 8(1): 215 doi: 10.1016/j.cegh.2019.08.002
      [18]
      Selema A, Ibrahim M N, Sergeant P. Metal additive manufacturing for electrical machines: technology review and latest advancements. Energies, 2022, 15(3): 1076 doi: 10.3390/en15031076
      [19]
      Buchanan C, Gardner L. Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Eng Struct, 2019, 180: 332 doi: 10.1016/j.engstruct.2018.11.045
      [20]
      孫時琛. 3D打印技術在首飾設計中的應用[學位論文]. 浙江:中國美術學院, 2017

      Sun S C. The Application of 3D Printing Technology in Jewelry Design [Dissertation]. Zhejiang: China Academy of Art, 2017
      [21]
      Lewandowski J, Seifi M. Metal additive manufacturing: A review of mechanical properties. Annu Rev Mater Res, 2016, 46: 151 doi: 10.1146/annurev-matsci-070115-032024
      [22]
      楊延華. 增材制造(3D打印)分類及研究進展. 航空工程進展, 2019, 10(3):309 doi: 10.16615/j.cnki.1674-8190.2019.03.003

      Yang Y H. Analysis of classifications and characteristic of additive manufacturing(3D print). Adv Aeronaut Sci Eng, 2019, 10(3): 309 doi: 10.16615/j.cnki.1674-8190.2019.03.003
      [23]
      Standard ASTM. F2792-12a Standard Terminology for Additive Manufacturing Technologies. West Conshohocken: ASTM International, 2012
      [24]
      Bhavar V, Kattire P, Patil V, et al. A review on powder bed fusion technology of metal additive manufacturing // 4th International Conference and Exhibition on Additive Manufacturing. Banglore, 2014: 1
      [25]
      Shim D S, Baek G Y, Seo J S, et al. Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process. Opt Laser Technol, 2016, 86: 69 doi: 10.1016/j.optlastec.2016.07.001
      [26]
      Gibson I, Rosen D, Stucker B. Directed Energy Deposition Processes. New York: Springer, 2015
      [27]
      Gibson I, Rosen D W, Stucker B. Sheet Lamination Processes. Boston: Springer, 2010
      [28]
      Lores A, Azurmendi N, Agote I, et al. A review on recent developments in binder jetting metal additive manufacturing: Materials and process characteristics. Powder Metall, 2019, 62(5): 267 doi: 10.1080/00325899.2019.1669299
      [29]
      Vafadar A, Guzzomi F, Rassau A, et al. Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges. Appl Sci, 2021, 11(3): 1213 doi: 10.3390/app11031213
      [30]
      Pagac M, Hajnys J, Ma Q P, et al. A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3D printing. Polymers, 2021, 13(4): 598 doi: 10.3390/polym13040598
      [31]
      王世崇, 朱雨薇, 吳瑤, 等. 光固化3D打印技術及光敏樹脂的開發與應用. 功能高分子學報, 2022, 35(1):19

      Wang S C, Zhu Y W, Wu Y, et al. Development and applications of UV-curing 3D printing and photosensitive resin. J Funct Polym, 2022, 35(1): 19
      [32]
      Hull C W. Apparatus for Production of Three-dimensional Objects by Stereolithography: US Patent, 4575330. 1986-3-11
      [33]
      王永信, 宗學文. 光固化3D打印技術. 武漢:華中科技大學出版社, 2018

      Wang Y X, Zong X W. UV-Curing 3D Printing Technology. Wuhan: Huazhong University of Science and Technology Press, 2018
      [34]
      Quan H Y, Zhang T, Xu H, et al. Photo-curing 3D printing technique and its challenges. Bioact Mater, 2020, 5(1): 110 doi: 10.1016/j.bioactmat.2019.12.003
      [35]
      Sakly A, Kenzari S, Bonina D, et al. A novel quasicrystal-resin composite for stereolithography. Mater Des, 2014, 56: 280 doi: 10.1016/j.matdes.2013.11.025
      [36]
      Halloran J W. Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annu Rev Mater Res, 2016, 46: 19 doi: 10.1146/annurev-matsci-070115-031841
      [37]
      Bartolo P J, Gaspar J. Metal filled resin for stereolithography metal part. CIRP Ann, 2008, 57(1): 235 doi: 10.1016/j.cirp.2008.03.124
      [38]
      Cho Y H, Lee I H, Cho D W. Laser scanning path generation considering photopolymer solidification in micro-stereolithography. Microsyst Technol, 2005, 11(2): 158
      [39]
      方浩博, 陳繼民. 基于數字光處理技術的3D打印技術. 北京工業大學學報, 2015, 41(12):1775 doi: 10.11936/bjutxb2015070050

      Fang H B, Chen J M. 3D printing based on digital light processing technology. J Beijing Univ Technol, 2015, 41(12): 1775 doi: 10.11936/bjutxb2015070050
      [40]
      Hornbeck L J. Digital light processing and MEMS: An overview // Digest IEEE/Leos 1996 Summer Topical Meeting. Advanced Applications of Lasers in Materials and Processing. Keystone, 1996: 7
      [41]
      Hornbeck L J. Digital light processing update: Status and future applications // Proceedings Volume 3634, Projection Displays V. San Jose, 1999: 158
      [42]
      Wu L F, Zhao L D, Jian M, et al. EHMP-DLP: Multi-projector DLP with energy homogenization for large-size 3D printing. Rapid Prototyp J, 2018, 24(9): 1500 doi: 10.1108/RPJ-04-2017-0060
      [43]
      Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science, 2015, 347(6228): 1349 doi: 10.1126/science.aaa2397
      [44]
      Lee J W, Lee I H, Cho D W. Development of micro-stereolithography technology using metal powder. Microelectron Eng, 2006, 83(4-9): 1253 doi: 10.1016/j.mee.2006.01.192
      [45]
      劉雨, 陳張偉. 陶瓷光固化3D打印技術研究進展. 材料工程, 2020, 48(9):1 doi: 10.11868/j.issn.1001-4381.2020.000114

      Liu Y, Chen Z W. Research progress in photopolymerization-based 3D printing technology of ceramics. J Mater Eng, 2020, 48(9): 1 doi: 10.11868/j.issn.1001-4381.2020.000114
      [46]
      Xiao J F, Zhang D X, Guo Q Q, et al. 3D co-printing of 3D electronics with a dual light source technology. Adv Mater Technol, 2021, 6(9): 2100039 doi: 10.1002/admt.202100039
      [47]
      Wang X L, Cui K J, Xuan Q, et al. Blue laser projection printing of conductive complex 2D and 3D metallic structures from photosensitive precursors. ACS Appl Mater Interfaces, 2019, 11(24): 21668 doi: 10.1021/acsami.9b02818
      [48]
      Wang H J, Chen C G, Yang F, et al. Direct ink writing of metal parts with curing by UV light irradiation. Mater Today Commun, 2021, 26: 102037 doi: 10.1016/j.mtcomm.2021.102037
      [49]
      Rieger T, Schubert T, Schurr J, et al. Slurry development for lithography-based additive manufacturing of cemented carbide components. Powder Technol, 2021, 383: 498 doi: 10.1016/j.powtec.2021.01.049
      [50]
      Rieger T, Schubert T, Schurr J, et al. Vat photopolymerization of cemented carbide specimen. Materials, 2021, 14(24): 7631 doi: 10.3390/ma14247631
      [51]
      Zhang Y B, Li S, Zhao Y T, et al. Digital light processing 3D printing of AlSi10Mg powder modified by surface coating. Addit Manuf, 2021, 39: 101897
      [52]
      施嘉婷, 金悅, 冉詩鈺. 一種光固化3D打印液態金屬的方法:中國專利, 110253015A. 2019-09-20

      Shi J T, Jin Y, Ran S Y. A Method of UV-curing 3D Printing Liquid Metal: China Patent, 110253015A. 2019-09-20
      [53]
      梁靜靜, 李喬磊, 李金國, 等. 一種光固化3D打印金屬-陶瓷復合材料件及其制備方法:中國專利, 112893866A. 2021-06-04

      Liang J J, Li Q L, Li J G, et al. A UV-curing 3D Printing Metal-Ceramic Composite Part and Its Preparation Method: China Patent, 112893866A. 2021-06-04
      [54]
      梁靜靜, 李喬磊, 李金國, 等. 一種摻金屬氧化物的光固化3D打印金屬件及其制備方法:中國專利, 112916850A. 2021-06-08

      Liang J J, Li Q L, Li J G, et al. A UV-Curing 3D Printing Metal Part Doped with Metal Oxide and Its Preparation Method: China Patent, 112916850A. 2021-06-08
      [55]
      李金國, 李喬磊, 梁靜靜, 等. 一種光固化3D打印納米顆粒增強金屬件及其制備方法:中國專利, 112916867A. 2021-06-08

      Li J G, Li Q L, Liang J J, et al. A UV-Curing 3D Printing Nanoparticle Reinforced Metal Part and Its Preparation Method: China Patent, 112916867A. 2021-06-08
      [56]
      李金國, 李喬磊, 梁靜靜, 等. 一種光固化3D打印金屬件及其制備方法:中國專利, 112916868A. 2021-06-08

      Li J G, Li Q L, Liang J J, et al. A UV-Curing 3D Printing Metal Part and Its Preparation Method: China Patent, 112916868A. 2021-06-08
      [57]
      李奕, 鄒超, 高鑫. 一種金屬陶瓷復合材料的3D打印方法:中國專利, 112692300A. 2021-04-23

      Li Y, Zou C, Gao X. A 3D Printing Method for Cermet Composite Materials: China Patent, 112692300A. 2021-04-23
      [58]
      劉彥君. 一種光固化金屬漿料及其制備方法:中國專利, 107214949A. 2017-09-29

      Liu Y J. A Photocuring Metal Slurry and Its Preparation Method: China Patent, 107214949A. 2017-09-29
      [59]
      Zheng X Y, Lee H, Weisgraber T H, et al. Ultralight, ultrastiff mechanical metamaterials. Science, 2014, 344(6190): 1373 doi: 10.1126/science.1252291
      [60]
      Li Y, Wang C T, Yuan H W, et al. A 5G MIMO antenna manufactured by 3-D printing method. IEEE Anntenas Wirel Propag Lett, 2016, 16: 657
      [61]
      Zhi Z, Wang C, Yao Y. Direct Metal Printing with Stereolithography: US Patent, 2010/0105794 A1. 2021-10-5
      [62]
      李霽, 劉瀚達, 王培任, 等. 一種聚合物-金屬復合材料的制造方法:中國專利, 109895382A. 2019-06-18

      Li J, Liu H D, Wang P R, et al. A Manufacturing Method of Polymer-Metal Composite Material: China Patent, 109895382A. 2019-06-18
      [63]
      李霽, 王培任, 王一丞, 等. 一種基于光固化3D打印技術的電路板的制造方法:中國專利, 109774132A. 2019-05-21

      Li J, Wang P R, Wang Y C, et al. Manufacturing Method of Circuit Board Based on UV-curing 3D Printing Technology: China Patent, 109774132A. 2019-05-21
      [64]
      Li J, Zhang Y, Wang P R, et al. Selectively metalizable stereolithography resin for three-dimensional DC and high-frequency electronics via hybrid additive manufacturing. ACS Appl Mater Interfaces, 2021, 13(19): 22891 doi: 10.1021/acsami.1c01199
      [65]
      Torregrosa-Penalva G, García-Martínez H, Ortega-Argüello á E, et al. Implementation of microwave circuits Using stereolithography. Polymers, 2022, 14(8): 1612 doi: 10.3390/polym14081612
      [66]
      Hung W I, Lin Y H, Wu P S, et al. Preparation and thermal properties of UV-curable polyacrylate-gold nanocomposite foams. J Mater Chem, 2012, 22(40): 21654 doi: 10.1039/c2jm33912a
      [67]
      Tsai S C, Chen L H, Chu C P, et al. Photo curable resin for 3D printed conductive structures. Addit Manuf, 2022, 51: 102590
      [68]
      Yang Y, Chen Z Y, Song X, et al. Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy, 2016, 22: 414 doi: 10.1016/j.nanoen.2016.02.045
      [69]
      Mubarak S, Dhamodharan D, Kale M B, et al. A novel approach to enhance mechanical and thermal properties of SLA 3D printed structure by incorporation of metal–metal oxide nanoparticles. Nanomaterials, 2020, 10(2): 217 doi: 10.3390/nano10020217
      [70]
      Fu Y L, Xu G, Chen Z W, et al. Multiple metals doped polymer-derived SiOC ceramics for 3D printing. Ceram Int, 2018, 44(10): 11030 doi: 10.1016/j.ceramint.2018.03.075
      [71]
      Aktitiz ?, Varol R, Akkurt N, et al. In-situ synthesis of 3D printable mono-and Bi-metallic (Cu/Ag) nanoparticles embedded polymeric structures with enhanced electromechanical properties. Polym Test, 2020, 90: 106724 doi: 10.1016/j.polymertesting.2020.106724
      [72]
      Taormina G, Sciancalepore C, Bondioli F, et al. Special resins for stereolithography: In situ generation of silver nanoparticles. Polymers, 2018, 10(2): 212 doi: 10.3390/polym10020212
      [73]
      Fantino E, Chiappone A, Roppolo I, et al. 3D printing of conductive complex structures with in situ generation of silver nanoparticles. Adv Mater, 2016, 28(19): 3712 doi: 10.1002/adma.201505109
      [74]
      Fantino E, Chiappone A, Calignano F, et al. In situ thermal generation of silver nanoparticles in 3D printed polymeric structures. Materials, 2016, 9(7): 589 doi: 10.3390/ma9070589
      [75]
      Valencia L M, Herrera M, de la Mata M, et al. Synthesis of silver nanocomposites for stereolithography: In situ formation of nanoparticles. Polymers, 2022, 14(6): 1168 doi: 10.3390/polym14061168
      [76]
      劉亞雄, 賀健康, 秦勉, 等. 定制型鈦合金植入物的光固化3D打印及精密鑄造. 稀有金屬材料與工程, 2014, 43(S1):339

      Liu Y X, He J K, Qin M, et al. Stereolithography & investment casting of custom Titanium implants. Rare Met Mater Eng, 2014, 43(S1): 339
      [77]
      沈理達, 陳志鵬, 焦晨, 等. 一種可控網絡陶瓷/金屬復合材料制備工藝:中國專利, 113172724A. 2021-07-27

      Shen L D, Chen Z P, Jiao C, et al. A Controllable Preparation Process of Network Ceramic / Metal Composites: China Patent, 113172724A. 2021-07-27
      [78]
      關杰仁, 王秋平, 陳超. 陶瓷顆粒增強金屬基復合材料的制備方法:中國專利, 112226640A. 2021-01-15

      Guan J R, Wang Q P, Chen C. Preparation Methods of Ceramic Particle Reinforced Metal Matrix Composites: China Patent, 112226640A. 2021-01-15
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(6)  / Tables(5)

      Article views (703) PDF downloads(103) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看