• Turn off MathJax
    Article Contents
    TIAN Xuekun, WANG Xia, SU Kai, OUYANG Deze, ZHAO Zhenyi, LIU Xinhong. Research progress and application prospects of the carbonization of biomass materials[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.11.005
    Citation: TIAN Xuekun, WANG Xia, SU Kai, OUYANG Deze, ZHAO Zhenyi, LIU Xinhong. Research progress and application prospects of the carbonization of biomass materials[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.11.005

    Research progress and application prospects of the carbonization of biomass materials

    doi: 10.13374/j.issn2095-9389.2022.11.11.005
    More Information
    • Corresponding author: E-mail: liuxinhong@zzu.edu.cn
    • Received Date: 2022-11-11
      Available Online: 2023-03-08
    • Biomass is a renewable energy resource with rich content in China. The products of the carbonization of biomass materials have been widely used in energy storage, adsorption materials, and other fields. Studying the carbonization process of biomass materials is crucial for the efficient use of biochar. This article summarizes the effects of biomass types and carbonization conditions (such as carbonization temperature and pretreatment) on the structure, morphology, and properties of carbon in carbonization products. The aim is to provide a theoretical foundation for the effective use of biomass carbonization products. Various biomass materials and biochar can be prepared after treatment. The contents of cellulose, hemicellulose, lignin, and ash in different types of biomass materials vary greatly, and the carbon content, carbon structure, morphology, and properties of the products after carbonization differ. Therefore, selecting appropriate biomass materials based on usage requirements is essential. The carbonization temperature of biomass materials plays an important role in the pyrolysis of biomass. As the carbonization temperature increases, cellulose, hemicellulose, and lignin gradually decompose into gases with small molecules. Furthermore, as the carbonization temperature continues to increase, the internal structure of biomass carbon continues to rearrange, forming a dense aromatic carbon network plane of macromolecules, which increases the graphitization degree of biomass carbon. Additionally, the temperature greatly affects the structure and amount of the products of biomass carbonization. The activation of biomass materials further enhances the specific surface area and adjusts the pore structure of biomass carbon. Chemical activators such as acids, alkalis, and salts are commonly used and have their own advantages and disadvantages. Appropriate activators should be selected by a comprehensive consideration of usage requirements to activate the biomass. This article summarizes the preparation of carbon nanotubes by the carbonization of biomass materials through the template and chemical vapor deposition methods under the action of a catalyst. Further, the influence of components such as lignin and cellulose in biomass materials on the preparation of carbon nanotubes is analyzed. Cellulose in biomass materials has a small molecular weight and is easy to pyrolyze, resulting in gases with smaller molecules. However, lignin has a large molecular weight, is difficult to decompose, and produces less amount of small molecular gas. Therefore, biomass materials with high cellulose content are found to facilitate the preparation of carbon nanotubes. On this basis, the application prospects of biomass materials in carbon-containing refractories have been considered and examined to provide ideas for the preparation of new carbon-containing refractories with low cost and good properties.

       

    • loading
    • [1]
      劉曉霞. 淺談農業廢棄物處理與資源化利用. 資源節約與環保, 2015(10):19 doi: 10.3969/j.issn.1673-2251.2015.10.026

      Liu X X. Discussion on agricultural waste treatment and resource utilization. Resour Econ Environ Prot, 2015(10): 19 doi: 10.3969/j.issn.1673-2251.2015.10.026
      [2]
      馬曉宇, 劉婷婷, 崔素萍. 生物質材料的制備及其資源化利用研究進展. 北京工業大學學報, 2020, 46(10):1204 doi: 10.11936/bjutxb2020050008

      Ma X Y, Liu T T, Cui S P, et al. Research progress on preparation and resource utilization of biomass materials. J Beijing Univ Technol, 2020, 46(10): 1204 doi: 10.11936/bjutxb2020050008
      [3]
      Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems?A review. Mitig Adapt Strateg Glob Change, 2006, 11(2): 403 doi: 10.1007/s11027-005-9006-5
      [4]
      Zhang Y, Liu S S, Zheng X Y, et al. Biomass organs control the porosity of their pyrolyzed carbon. Adv Funct Mater, 2017, 27(3): 1604687 doi: 10.1002/adfm.201604687
      [5]
      Tan X Y, Yu C, Ren Y W, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ Sci, 2021, 14(2): 765 doi: 10.1039/D0EE02981E
      [6]
      Yuan H D, Liu T F, Liu Y J, et al. A review of biomass materials for advanced lithium–sulfur batteries. Chem Sci, 2019, 10(32): 7484 doi: 10.1039/C9SC02743B
      [7]
      Gunawan T D, Munawar E, Muchtar S. Preparation and characterization of chemically activated adsorbent from the combination of coconut shell and fly ash. Mater Today, 2022, 63: S40 doi: 10.1016/j.matpr.2022.01.023
      [8]
      Neves C V, Módenes A N, Scheufele F B, et al. Dibenzothiophene adsorption onto carbon-based adsorbent produced from the coconut shell: Effect of the functional groups density and textural properties on kinetics and equilibrium. Fuel, 2021, 292: 120354 doi: 10.1016/j.fuel.2021.120354
      [9]
      Tian X K, Chen X Y, Ma C L, et al. Green synthesis of blue-green photoluminescent β-SiC nanowires with core-shell structure using coconut shell as carbon source. Ceram Int, 2022, 48(24): 36273 doi: 10.1016/j.ceramint.2022.08.186
      [10]
      Bourgois J, Guyonnet R. Characterization and analysis of torrefied wood. Wood Sci Technol, 1988, 22(2): 143 doi: 10.1007/BF00355850
      [11]
      Phanphanich M, Mani S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol, 2011, 102(2): 1246 doi: 10.1016/j.biortech.2010.08.028
      [12]
      Felfli F F, Luengo C A, Suárez J A, et al. Wood briquette torrefaction. Energy Sustain Dev, 2005, 9(3): 19 doi: 10.1016/S0973-0826(08)60519-0
      [13]
      Abdullah H, Wu H W. Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuels, 2009, 23(8): 4174
      [14]
      Rodríguez A, Moral A, Sánchez R, et al. Influence of variables in the hydrothermal treatment of rice straw on the composition of the resulting fractions. Bioresour Technol, 2009, 100(20): 4863 doi: 10.1016/j.biortech.2009.04.030
      [15]
      Nsimba R Y, Mullen C A, West N M, et al. Structure-property characteristics of pyrolytic lignins derived from fast pyrolysis of a lignin rich biomass extract. ACS Sustainable Chem Eng, 2013, 1(2): 260 doi: 10.1021/sc300119s
      [16]
      鄧叢靜, 馬歡歡, 王亮才, 等. 杏殼半纖維素的結構表征與熱解產物特性. 林業科學, 2019, 55(1):74 doi: 10.11707/j.1001-7488.20190109

      Deng C J, Ma H H, Wang L C, et al. Structure characterization and pyrolysis properties of apricot shell hemicellulose. Sci Silvae Sin, 2019, 55(1): 74 doi: 10.11707/j.1001-7488.20190109
      [17]
      蔣挺大. 木質素. 北京:化學工業出版社, 2001

      Jiang T D. Lignin. Beijing: Chemical Industry Press, 2001
      [18]
      梁雨. 稻殼灰制備TiO2?SiO2復合載體脫硝催化材料的研究[學位論文]. 北京:北京工業大學, 2019

      Liang Y. Study on Preparation of TiO2?SiO2 Composites as Carrier Denitrification Catalytic Materials from Rice Husk Ash [Dissertation]. Beijing: Beijing University of Technology, 2019
      [19]
      莊曉偉, 陳順偉, 張桃元, 等. 7種生物質炭燃燒特性的分析. 林產化學與工業, 2009, 29(S1):169

      Zhuang X W, Chen S W, Zhang T Y, et al. Thermal analysis on the combustion characteristics of 7 kinds of biomass charcoals. Chem Ind For Prod, 2009, 29(S1): 169
      [20]
      劉玉學. 生物質炭輸入對土壤氮素流失及溫室氣體排放特性的影響[學位論文]. 杭州:浙江大學, 2011

      Liu Y X. Effects of Biochar Input on Soil Nitrogen Loss and Greenhouse Gas Emission [Dissertation]. Hangzhou: Zhejiang University, 2011
      [21]
      何佳聞, 何春霞, 郭航言, 等. 5種秸稈生物炭吸附亞甲基藍及其性能對比研究. 南京農業大學學報, 2019, 42(2):382 doi: 10.7685/jnau.201807039

      He J W, He C X, Guo H Y, et al. Adsorption of methylene blue by five straw biochars and its performance comparison. J Nanjing Agric Univ, 2019, 42(2): 382 doi: 10.7685/jnau.201807039
      [22]
      林肖慶, 呂豪豪, 劉玉學. 生物質原料及炭化溫度對生物炭產率與性質的影響. 浙江農業學報, 2016, 28(7):1216 doi: 10.3969/j.issn.1004-1524.2016.07.019

      Lin X Q, Lv H H, Liu Y X. Effects of biomass and carbonization temperature on biochar yield and characteristics. Acta Agric Zhejiangensis, 2016, 28(7): 1216 doi: 10.3969/j.issn.1004-1524.2016.07.019
      [23]
      郭平, 王觀竹, 許夢, 等. 不同熱解溫度下生物質廢棄物制備的生物質炭組成及結構特征. 吉林大學學報(理學版), 2014, 52(4):855

      Guo P, Wang G Z, Xu M, et al. Composition and structural characteristics of biochar derived from biomass waste at different pyrolysis temperatures. J Jilin Univ Sci Ed, 2014, 52(4): 855
      [24]
      宋少花, 宋曉喬, 劉瑾, 等. 秸稈廢料再生生物質炭的性能研究. 山東化工, 2021, 50(7):237 doi: 10.3969/j.issn.1008-021X.2021.07.101

      Song S H, Song X Q, Liu J, et al. Study on properties of regenerated biomass charcoal from straw waste. Shandong Chem Ind, 2021, 50(7): 237 doi: 10.3969/j.issn.1008-021X.2021.07.101
      [25]
      趙輝, 閆華曉, 張萌萌, 等. 海洋生物質的熱解特性與動力學研究. 生物技術通報, 2010(4):135

      Zhao H, Yan H X, Zhang M M, et al. Pyrolysis characteristic and kinetics of marine biomass. Biotechnol Bull, 2010(4): 135
      [26]
      江澤慧, 張東升, 費本華, 等. 炭化溫度對竹炭微觀結構及電性能的影響. 新型炭材料, 2004, 19(4):249

      Jiang Z H, Zhang D S, Fei B H, et al. Effects of carbonization temperature on the microstructure and electrical conductivity of bamboo charcoal. N Carbon Mater, 2004, 19(4): 249
      [27]
      李昂. 生物質熱解炭化制備成型生物質炭的實驗研究[學位論文]. 昆明:昆明理工大學, 2016

      Li A. Experimental Study on Preparation of Molded Biomass Charcoal by Pyrolysis and Carbonization of Biomass [Dissertation]. Kunming: Kunming University of Science and Technology, 2016
      [28]
      施蔭銳, 唐啟鳳, 趙玉明. 椰子殼制活性炭的研究. 林產化學與工業, 1986, 6(2):23

      Shi Y R, Tang Q F, Zhao Y M, et al. Study on preparation of activated carbon from cocoanut shell. Chem Ind For Prod, 1986, 6(2): 23
      [29]
      李建生, 高長青, 王雪, 等. 高性能活性炭開發生產中的無機活化劑. 無機鹽工業, 2019, 51(8):1

      Li J S, Gao C Q, Wang X, et al. Inorganic activators utilized in development and production of high performance activated carbon. Inorg Chems Ind, 2019, 51(8): 1
      [30]
      秦千惠, 鐘菲, 趙曉磊, 等. 活化劑種類對生物質活性炭理化特性的影響. 太陽能學報, 2022, 43(2):1 doi: 10.19912/j.0254-0096.tynxb.2020-0240

      Qin Q H, Zhong F, Zhao X L, et al. Effect of different activator on physicochemical properties of activated carbon from biomass. Acta Energiae Solaris Sin, 2022, 43(2): 1 doi: 10.19912/j.0254-0096.tynxb.2020-0240
      [31]
      杜壽考. 硫酸處理制備高收率生物基多孔炭. 炭素, 2008(1):35 doi: 10.3969/j.issn.1001-8948.2008.01.005

      Du S K. Production of high yield activated carbon from waste biomass by acid treatment method. Carbon, 2008(1): 35 doi: 10.3969/j.issn.1001-8948.2008.01.005
      [32]
      相瑞隆. 基于酸處理的生物質熱解特性的研究[學位論文]. 長沙:長沙理工大學, 2019

      Xiang R L. Study on Pyrolysis Characteristics of Biomass Based on Acid Treatments [Dissertation]. Changsha: Changsha University of Science and Technology, 2019
      [33]
      鄒專勇, 周建迪, 楊艷秋, 等. 生物質活性炭制備關鍵技術與應用現狀. 紡織科學與工程學報, 2016, 33(2):53 doi: 10.3969/j.issn.1008-5580.2016.02.011

      Zou Z Y, Zhou J D, Yang Y Q, et al. Key technology and application status of biomass activated carbon preparation. J Chengdu Text Coll, 2016, 33(2): 53 doi: 10.3969/j.issn.1008-5580.2016.02.011
      [34]
      練澎, 張小鳳. 碳納米管制備方法的研究進展. 當代化工, 2015, 44(4):737 doi: 10.3969/j.issn.1671-0460.2015.04.025

      Lian P. Zhang X F. Research progress in preparation methods of carbon nanotubes. Contemp Chem Ind, 2015, 44(4): 737 doi: 10.3969/j.issn.1671-0460.2015.04.025
      [35]
      Jeong S H, Hwang H Y, Lee K H, et al. Template-based carbon nanotubes and their application to a field emitter. Appl Phys Lett, 2001, 78(14): 2052 doi: 10.1063/1.1359483
      [36]
      梁昊. 生物質基碳納米管的合成與表征[學位論文]. 大連:遼寧師范大學, 2014

      Liang H. Synthesis and Characterization of Biomass-Based Carbon Nanotubes [Dissertation]. Dalian: Liaoning Normal University, 2014
      [37]
      白金鵬. 生物質基碳納米管復合功能材料的設計合成與表征[學位論文]. 大連:遼寧師范大學, 2016

      Bai J P. Design, Synthesis and Characterization of Biomass Based Carbon Nanotubes Composite Functional Materials [Dissertation]. Dalian: Liaoning Normal University, 2016
      [38]
      王軍凱. 碳納米管/碳化硅原位催化制備、機理及其在MgO–C材料中的應用[學位論文]. 武漢:武漢科技大學, 2018

      Wang J K. In-situ Catalytic Preparation Mechanism of Carbon Nanotubes/SiC and their Application in MgO–C Refractory [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2018
      [39]
      武琳婷. 纖維素炭化制備碳材料的工藝研究[學位論文]. 太原:太原理工大學, 2015

      Wu L T. Technical Research on the Preparation of Carbon Materials from Cellulose by Carbonization at High Temperature [Dissertation]. Taiyuan: Taiyuan University of Technology, 2015
      [40]
      沈賢城. 生物質熱解氣合成碳納米管及其在污染物去除中的應用研究[學位論文]. 合肥:中國科學技術大學, 2018

      Shen X C. Synthesis of Carbon Nanotubes by Biomass Pyrolysis Gas and their Application in Pollutant Removal [Dissertation]. Hefei: University of Science and Technology of China, 2018
      [41]
      史曉悠. 木質纖維素三種組分的分離及碳納米管的制備[學位論文]. 北京:北京化工大學, 2020

      Shi X Y. Separation of Three Components of Lignocellulose and Preparation of Carbon Nanotubes [Dissertation]. Beijing: Beijing University of Chemical Technology, 2020
      [42]
      Melati A, Hidayati E. Synthesis and characterization of carbon nanotube from coconut shells activated carbon. J Phys:Conf Ser, 2016, 694(1): 012073
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(14)  / Tables(2)

      Article views (672) PDF downloads(141) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看