Citation: | LI Na, ZONG Tianxin, WANG Luning. Development of a novel rapid and high-precision active learning algorithm: A case study of the prediction of the mechanical properties of MAX phase crystals[J]. Chinese Journal of Engineering, 2023, 45(11): 1896-1907. doi: 10.13374/j.issn2095-9389.2023.03.15.001 |
[1] |
曾小勤, 謝天, 應韜, 等. 數據驅動的鎂合金結構與性能設計. 中國材料進展, 2020, 39(1):1 doi: 10.7502/j.issn.1674-3962.201911007
Zeng X Q, Xie T, Ying T, et al. Data-driven designing of microstructures and properties of magnesium alloys. Mater China, 2020, 39(1): 1 doi: 10.7502/j.issn.1674-3962.201911007
|
[2] |
劉興軍, 陳悅超, 盧勇, 等. 新型鈷基高溫合金多尺度設計的研究現狀與展望. 金屬學報, 2020, 56(1):1 doi: 10.11900/0412.1961.2019.00159
Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel co-based superalloys: A review. Acta Metall Sin, 2020, 56(1): 1 doi: 10.11900/0412.1961.2019.00159
|
[3] |
Krishna Y V, Jaiswal U K, Rahul M R. Machine learning approach to predict new multiphase high entropy alloys. Scr Mater, 2021, 197: 113804 doi: 10.1016/j.scriptamat.2021.113804
|
[4] |
Qiao L, Ramanujan R V, Zhu J C. Machine learning accelerated design of a family of AlxCrFeNi medium entropy alloys with superior high temperature mechanical and oxidation properties. Corros Sci, 2023, 211: 110805 doi: 10.1016/j.corsci.2022.110805
|
[5] |
Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery. Science, 2022, 378(6615): 78 doi: 10.1126/science.abo4940
|
[6] |
Qin Z J, Wang Z, Wang Y Q, et al. Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning. Mater Res Lett, 2021, 9(1): 32 doi: 10.1080/21663831.2020.1815093
|
[7] |
Zeng Y Z, Man M R, Bai K W, et al. Explore the full temperature-composition space of 20 quinary CCAs for FCC and BCC single-phases by an iterative machine learning + CALPHAD method. Acta Mater, 2022, 231: 117865 doi: 10.1016/j.actamat.2022.117865
|
[8] |
宿彥京, 付華棟, 白洋, 等. 中國材料基因工程研究進展. 金屬學報, 2020, 56(10):1313 doi: 10.11900/0412.1961.2020.00199
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China. Acta Metall Sin, 2020, 56(10): 1313 doi: 10.11900/0412.1961.2020.00199
|
[9] |
陳兆宇, 荊豐偉, 李杰, 等. 基于改進降噪自編碼器半監督學習模型的熱軋帶鋼水梁印識別算法. 工程科學學報, 2022, 44(8):1338
Chen Z Y, Jing F W, Li J, et al. Recognition algorithm of hot-rolled strip steel water beam mark based on a semisupervised learning model of an improved denoising autoencoder. Chin J Eng, 2022, 44(8): 1338
|
[10] |
Lookman T, Balachandran P V, Xue D Z, et al. Statistical inference and adaptive design for materials discovery. Curr Opin Solid State Mater Sci, 2017, 21(3): 121 doi: 10.1016/j.cossms.2016.10.002
|
[11] |
李姿昕, 張能, 熊斌, 等. 材料科學數據庫在材料研發中的應用與展望. 數據與計算發展前沿, 2020, 2(2):78
Li Z X, Zhang N, Xiong B, et al. Materials science database in material research and development: Recent applications and prospects. Front Data Comput, 2020, 2(2): 78
|
[12] |
趙婉辰, 鄭晨, 肖斌, 等. 基于Bayesian采樣主動機器學習模型的6061鋁合金成分精細優化. 金屬學報, 2021, 57(6):797
Zhao W C, Zheng C, Xiao B, et al. Composition refinement of 6061 aluminum alloy using active machine learning model based on Bayesian optimization sampling. Acta Metall Sin, 2021, 57(6): 797
|
[13] |
Bassman Oftelie L, Rajak P, Kalia R K, et al. Active learning for accelerated design of layered materials. NPJ Comput Mater, 2018, 4(1): 74 doi: 10.1038/s41524-018-0129-0
|
[14] |
Gubaev K, Podryabinkin E V, Hart G L W, et al. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Comput Mater Sci, 2019, 156: 148 doi: 10.1016/j.commatsci.2018.09.031
|
[15] |
Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions. J Glob Optim, 1998, 13(4): 455 doi: 10.1023/A:1008306431147
|
[16] |
Douak F, Melgani F, Benoudjit N. Kernel ridge regression with active learning for wind speed prediction. Appl Energy, 2013, 103: 328 doi: 10.1016/j.apenergy.2012.09.055
|
[17] |
Barsoum M W. MAX Phases : Properties of Machinable Ternary Carbides and Nitrides. Hoboken: John Wiley & Sons, 2013
|
[18] |
Aryal S, Sakidja R, Barsoum M W, et al. A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Phys Status Solidi B, 2014, 251(8): 1480 doi: 10.1002/pssb.201451226
|
[19] |
Cover M F, Warschkow O, Bilek M M, et al. A comprehensive survey of M2AX phase elastic properties. J Phys: Condens Matter, 2009, 21(30): 305403 doi: 10.1088/0953-8984/21/30/305403
|
[20] |
Balachandran P V, Xue D Z, Theiler J, et al. Adaptive strategies for materials design using uncertainties. Sci Rep, 2016, 6: 19660 doi: 10.1038/srep19660
|
[21] |
RayChaudhuri T, Hamey L G C. Minimisation of data collection by active learning//Proceedings of ICNN'95-International Conference on Neural Networks. Perth, 1995: 1338
|
[22] |
Cai W B, Zhang Y, Zhou J. Maximizing expected model change for active learning in regression//2013 IEEE 13th International Conference on Data Mining. Dallas, 2013: 51
|
[23] |
Sugiyama M, Nakajima S. Pool-based active learning in approximate linear regression. Mach Learn, 2009, 75(3): 249 doi: 10.1007/s10994-009-5100-3
|
[24] |
Wu D R, Lin C T, Huang J. Active learning for regression using greedy sampling. Inf Sci, 2019, 474: 90 doi: 10.1016/j.ins.2018.09.060
|
[25] |
Powell W B, Ryzhov I O. Optimal Learning. Hoboken: John Wiley & Sons, 2012
|