Citation: | ZHANG Junhao, CHEN Yinglong, YANG Xinyu, GONG Yongjun. Modeling and control simulation of a bio-inspired underwater snake robot with a novel rigid–soft coupling structure[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.04.05.001 |
[1] |
Nakajoh H, Miyazaki T, Sawa T K, et al. Development of 7000m work class ROV “KAIKO Mk-IV” // OCEANS 2016 MTS/IEEE Monterey. Monterey, 2016: 1
|
[2] |
Capocci R, Dooly G, Omerdi? E, et al. Inspection-class remotely operated vehicles—a review. J Mar Sci Eng, 2017, 5(1): 13 doi: 10.3390/jmse5010013
|
[3] |
Paull L, Saeedi S, Seto M, et al. AUV navigation and localization: A review. IEEE J Oceanic Eng, 2013, 39(1): 131
|
[4] |
Ribas D, Ridao P, Turetta A, et al. I-AUV mechatronics integration for the TRIDENT FP7 project. IEEE/ASME Trans Mechatron, 2015, 20(5): 2583 doi: 10.1109/TMECH.2015.2395413
|
[5] |
Yamada H, Hirose S. Development of practical 3-dimensional active cord mechanism ACM-R4. J Robot Mechatron, 2006, 18(3): 305 doi: 10.20965/jrm.2006.p0305
|
[6] |
Sugita S, Ogami K, Michele G, et al. A study on the mechanism and locomotion strategy for new snake-like robot active cord mechanism–slime model 1 ACM-S1. J Robot Mechatron, 2008, 20(2): 302 doi: 10.20965/jrm.2008.p0302
|
[7] |
Hirose S, Yamada H. Snake-like robots [tutorial]. IEEE Robot Autom Mag, 2009, 16(1): 88 doi: 10.1109/MRA.2009.932130
|
[8] |
Crespi A, Ijspeert A J. AmphiBot II: An amphibious snake robot that crawls and swims using a central pattern generator // Proceedings of the 9th International Conference on Climbing and Walking Robots (CLAWAR 2006). Brussels, 2006: 19
|
[9] |
Crespi A, Badertscher A, Guignard A, et al. AmphiBot I: an amphibious snake-like robot. Robot Auton Syst, 2005, 50(4): 163 doi: 10.1016/j.robot.2004.09.015
|
[10] |
Bayat B, Crespi A, Ijspeert A. Envirobot: A bio-inspired environmental monitoring platform // 2016 IEEE/OES Autonomous Underwater Vehicles (AUV). Tokyo, 2016: 381
|
[11] |
Tesch M, Lipkin K, Brown I, et al. Parameterized and scripted gaits for modular snake robots. Adv Robot, 2009, 23(9): 1131 doi: 10.1163/156855309X452566
|
[12] |
Zhang J H, Chen Y L, Gong Y J. Kinematics, dynamics, and control of underwater robotic snake based on a rigid-soft unified model. Ships Offshore Struc, https://doi.org/10.1080/17445302.2023.2247131
|
[13] |
Wang K D, Ma S G. Kinematic analysis of snake-like robot using sliding joints // 2010 IEEE International Conference on Robotics and Biomimetics. Tianjin, 2010: 1484
|
[14] |
Liljeb?ck P, Stavdahl ?, Pettersen K Y, et al. Mamba-A waterproof snake robot with tactile sensing // 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014: 294
|
[15] |
Sverdrup-Thygeson J, Kelasidi E, Pettersen K Y, et al. The underwater swimming manipulator-a bio-inspired AUV // 2016 IEEE/OES Autonomous Underwater Vehicles (AUV). Tokyo, 2016: 387
|
[16] |
Kelasidi E, Pettersen K Y, Liljeb?ck P, et al. Locomotion efficiency of underwater snake robots with thrusters // 2016 IEEE International Aymposium on Aafety, Aecurity, and Rescue Robotics (SSRR). Lausanne, 2016: 174
|
[17] |
Liljeb?ck P, Mills R. Eelume: A flexible and subsea resident IMR vehicle // Oceans 2017-Aberdeen. Aberdeen, 2017: 1
|
[18] |
Schmidt-Didlaukies H M, S?rensen A J, Pettersen K Y. Modeling of articulated underwater robots for simulation and control // 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV). Porto, 2018: 1
|
[19] |
Zwilgmeyer P G O. Creating a Synthetic Underwater Dataset for Egomotion Estimation and 3D Reconstruction [Dissertation]. Trondheim: Norwegian University of Science and Technology, 2021.
|
[20] |
張軍豪, 陳英龍, 楊雙喜, 等. 蛇形機器人:仿生機理、結構驅動和建模控制. 機械工程學報, 2022, 58(7):75 doi: 10.3901/JME.2022.07.075
Zhang J H, Chen Y L, Yang S X, et al. Snake robotics: Bionic mechanism, structure, actuation, modeling and control. J Mech Eng, 2022, 58(7): 75 doi: 10.3901/JME.2022.07.075
|
[21] |
Zhang J H, Chen Y L, Liu Y, et al. Dynamic modeling of underwater snake robot by hybrid rigid-soft actuation. J Mar Sci Eng, 2022, 10(12): 1914 doi: 10.3390/jmse10121914
|
[22] |
Liljeb?ck P, Pettersen K Y, Stavdahl ?, et al. A review on modelling, implementation, and control of snake robots. Robot and Auton Syst, 2012, 60(1): 29 doi: 10.1016/j.robot.2011.08.010
|
[23] |
Pettersen K Y. Snake robots. Annu Rev Contr, 2017, 44: 19 doi: 10.1016/j.arcontrol.2017.09.006
|
[24] |
Enner F, Rollinson D, Choset H. Simplified motion modeling for snake robots // 2012 IEEE International Conference on Robotics and Automation. Saint Paul, 2012: 4216
|
[25] |
Webster R J III, Jones B A. Design and kinematic modeling of constant curvature continuum robots: A review. Int J Robot Res, 2010, 29(13): 1661 doi: 10.1177/0278364910368147
|
[26] |
Wang C S, Frazelle C G, Wagner J R, et al. Dynamic control of multisection three-dimensional continuum manipulators based on virtual discrete-jointed robot models. IEEE/ASME Trans Mechatron, 2020, 26(2): 777
|
[27] |
Tanaka M, Tanaka K. Control of a snake robot for ascending and descending steps. IEEE Trans Robot, 2015, 31(2): 511 doi: 10.1109/TRO.2015.2400655
|
[28] |
Moe S, Antonelli G, Teel A R, et al. Set-based tasks within the singularity-robust multiple task-priority inverse kinematics framework: General formulation, stability analysis, and experimental results. Front Robot AI, 2016, 3: 16
|
[29] |
Basso E A, Pettersen K Y. Task-priority control of redundant robotic systems using control lyapunov and control barrier function based quadratic programs. IFAC-PapersOnLine, 2020, 53(2): 9037 doi: 10.1016/j.ifacol.2020.12.2024
|
[30] |
Simetti E, Casalino G, Wanderlingh F, et al. Task priority control of underwater intervention systems: Theory and applications. Ocean Eng, 2018, 164: 40 doi: 10.1016/j.oceaneng.2018.06.026
|
[31] |
Chen Y L, Li W S, Guo Q, et al. Kinematics modeling of soft manipulator interacting with environment using segmented variable curvature method. Int J Contr Autom Syst, 2022, 20(1): 255 doi: 10.1007/s12555-020-0559-6
|
[32] |
Chen Y L, Zhang J H, Gong Y J. Utilizing anisotropic fabrics composites for high-strength soft manipulator integrating soft gripper. IEEE Access, 2019, 7: 127416 doi: 10.1109/ACCESS.2019.2940499
|
[33] |
Zhang J H, Chen Y L, Gong Y J. Dynamic model and analysis of soft manipulator facing underwater complex environment // 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE). Dalian, 2021: 593
|
[34] |
Zhang J H, Chen Y L, Gong Y J. Hybrid dynamic modeling for an underwater rigid-soft snake robot // 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Baishan, 2022: 1258
|
[35] |
From P J, Gravdahl J T, Pettersen K Y. Vehicle-manipulator systems. London: Springer, 2016
|
[36] |
Antonelli G. Underwater Robots : Motion and Force Control of Vehicle-Manipulator Systems. London: Springer, 2006
|