• Turn off MathJax
    Article Contents
    LIU Jiazhu, GAO Yongtao, WU Shunchuan, WU Zhongguang, LI Guangquan, LI Zaili. Probability evaluation of rockburst tendency considering the spatial variation in rock mass properties[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.04.18.001
    Citation: LIU Jiazhu, GAO Yongtao, WU Shunchuan, WU Zhongguang, LI Guangquan, LI Zaili. Probability evaluation of rockburst tendency considering the spatial variation in rock mass properties[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.04.18.001

    Probability evaluation of rockburst tendency considering the spatial variation in rock mass properties

    doi: 10.13374/j.issn2095-9389.2023.04.18.001
    More Information
    • Corresponding author: E-mail: wushunchuan@163.com
    • Received Date: 2023-04-18
      Available Online: 2023-08-18
    • Rockburst disasters pose an increasing threat to the construction safety of deep-buried engineering; thus, rockburst prediction is crucial for ensuring construction safety. However, due to the spatial variation in mechanical properties of rock mass, the actual results of rockburst prediction remain uncertain to some extent. In this study, rockburst tendency and its probability were studied to explore a more suitable evaluation method for rockburst tendency in engineering practice. First, an improved cohesion weakening–friction strengthening model was developed considering the dynamic change of rock dilatancy strength, and the rockburst tendency analysis was combined with the energy index. The point estimation-finite element analysis method was used to analyze rockburst tendency based on the Dahongshan copper mine project buried at a depth greater than 1,000 m. A finite element model was constructed, in which initial cohesion, residual cohesion, residual friction angle, viscous plastic strain critical value, critical value of cohesion plastic strain, and critical value of friction angle plastic strain were used as input variables, and rockburst depth, range, and local energy release value were used as output variables. The specific methods and steps of problem analysis were also elucidated. Furthermore, the probability model of rockburst failure was obtained, and the probability density function and cumulative distribution function were obtained. The probability distribution of the rockburst area was obtained by meshing the failure elements and weight combinations of different scheme results. The research results revealed that the constitutive model and index can better represent the rockburst damage compared with other methods. After considering the variability of rock mass parameters, the depth of rockburst with 95% confidence is consistent with the depth recorded in the field, and the angle range also agrees, which is more accurate than only the fixed value, thus verifying the feasibility and correctness of the uncertainty analysis. The data predicts the unspecified range and local energy release value. Moreover, different statistical indicators conform to different distribution functions. Normal, gamma, and lognormal distributions are optimal for rockburst depth, angle, and local energy release value, respectively. Thus, based on the analysis indication of depth and range, with 80%, 40%, and 20% as the limits, the probability of tendency can be divided into maximum, large, medium, or small, respectively. The probability distribution map of the rockburst area can more intuitively determine the area and probability of rockburst damage. The research results are significant for rockburst support and risk assessment.

       

    • loading
    • [1]
      Feng X T, Zhang X W, Kong R, et al. A novel mogi type true triaxial testing apparatus and its use to obtain complete stress-strain curves of hard rocks. Rock Mech Rock Eng, 2016, 49(5): 1649 doi: 10.1007/s00603-015-0875-y
      [2]
      Jiang R C, Dai F, Liu Y, et al. Fast marching method for microseismic source location in cavern-containing rockmass: Performance analysis and engineering application. Engineering, 2021, 7(7): 1023 doi: 10.1016/j.eng.2020.10.019
      [3]
      Yang B B, He M M, Zhang Z Q, et al. A new criterion of strain rockburst in consideration of the plastic zone of tunnel surrounding rock. Rock Mech Rock Eng, 2022, 55(3): 1777 doi: 10.1007/s00603-021-02725-3
      [4]
      周子楣. 基于巖爆監測的大數據分析模型[學位論文]. 北京:北京理工大學, 2016

      Zhou Z M. Big Data Analysis Model Based on Rockburst Monitoring [Dissertation]. Beijing: Beijing Institute of Technology, 2016
      [5]
      Brown E T, Hoke E. Underground Excavation in Rock. London: CRC Press, 1980
      [6]
      Russense B F. Analyses of Rockburst in Tunnels in Valley Sides [Dissertation]. Trondheim: Norwegian Institute of Technology, 1974
      [7]
      陶振宇. 高地應力區的巖爆及其判別. 人民長江, 1987, 18(5):25 doi: 10.16232/j.cnki.1001-4179.1987.05.005

      Tao Z Y. Rockburst in high geostress area and its discrimination. Yangtze River, 1987, 18(5): 25 doi: 10.16232/j.cnki.1001-4179.1987.05.005
      [8]
      陳衛忠, 呂森鵬, 郭小紅, 等. 基于能量原理的卸圍壓試驗與巖爆判據研究. 巖石力學與工程學報, 2009, 28(8):1530 doi: 10.3321/j.issn:1000-6915.2009.08.003

      Chen W Z, Lu S P, Guo X H, et al. Research on unloading confining pressure tests and rockburst criterion based on energy theory. Chin J Rock Mech Eng, 2009, 28(8): 1530 doi: 10.3321/j.issn:1000-6915.2009.08.003
      [9]
      谷明成, 何發亮, 陳成宗. 秦嶺隧道巖爆的研究. 巖石力學與工程學報, 2002, 21(9):1324 doi: 10.3321/j.issn:1000-6915.2002.09.009

      Gu M C, He F L, Chen C Z. Study on rockburst in Qingling tunnel. Chin J Rock Mech Eng, 2002, 21(9): 1324 doi: 10.3321/j.issn:1000-6915.2002.09.009
      [10]
      吳順川, 張晨曦, 成子橋. 基于PCA-PNN原理的巖爆烈度分級預測方法. 煤炭學報, 2019, 44(9):2767 doi: 10.13225/j.cnki.jccs.2018.1519

      Wu S C, Zhang C X, Cheng Z Q. Prediction of intensity classification of rockburst based on PCA-PNN principle. J China Coal Soc, 2019, 44(9): 2767 doi: 10.13225/j.cnki.jccs.2018.1519
      [11]
      田睿, 孟海東, 陳世江, 等. RF-AHP-云模型下巖爆烈度分級預測模型. 中國安全科學學報, 2020, 30(7):166 doi: 10.16265/j.cnki.issn1003-3033.2020.07.025

      Tian R, Meng H D, Chen S J, et al. Prediction model of rockburst intensity classification based on RF-AHP-Cloud model. China Saf Sci J, 2020, 30(7): 166 doi: 10.16265/j.cnki.issn1003-3033.2020.07.025
      [12]
      譚文侃, 葉義成, 胡南燕, 等. LOF與改進SMOTE算法組合的強烈巖爆預測. 巖石力學與工程學報, 2021, 40(6):1186 doi: 10.13722/j.cnki.jrme.2020.1035

      Tan W K, Ye Y C, Hu N Y, et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm. Chin J Rock Mech Eng, 2021, 40(6): 1186 doi: 10.13722/j.cnki.jrme.2020.1035
      [13]
      蘇國韶, 馮夏庭, 江權, 等. 高地應力下地下工程穩定性分析與優化的局部能量釋放率新指標研究. 巖石力學與工程學報, 2006, 25(12):2453 doi: 10.3321/j.issn:1000-6915.2006.12.010

      Su G S, Feng X T, Jiang Q, et al. Study on new index of local energy release rate for stability analysis and optimal design of underground rockmass engineering with high geostress. Chin J Rock Mech Eng, 2006, 25(12): 2453 doi: 10.3321/j.issn:1000-6915.2006.12.010
      [14]
      Weng L, Huang L Q, Taheri A, et al. Rockburst characteristics and numerical simulation based on a strain energy density index: A case study of a roadway in Linglong gold mine, China. Tunn Undergr Space Technol, 2017, 69: 223 doi: 10.1016/j.tust.2017.05.011
      [15]
      Diederichs M S. Early assessment of dynamic rupture hazard for rockburst risk management in deep tunnel projects. J S Afr Inst Min Metall, 2018, 118(3): 193 doi: 10.17159/2411-9717/2018/v118n3a1
      [16]
      吳忠廣. 深埋隧道硬巖災變風險評估方法研究[學位論文]. 北京:北京科技大學, 2021

      Wu Z G. Research on Risk Assessment Method for Hard Rock Catastrophe in Deep Tunnels [Dissertation]. Beijing: University of Science and Technology Beijing, 2021
      [17]
      Hajiabdolmajid V R. Mobilization of Strength in Brittle Failure of Rock [Dissertation]. Kingston: Queen's University, 2001
      [18]
      Hajiabdolmajid V, Kaiser P K, Martin C D. Modelling brittle failure of rock. Int J Rock Mech Min Sci, 2002, 39(6): 731 doi: 10.1016/S1365-1609(02)00051-5
      [19]
      Hajiabdolmajid V, Kaiser P. Brittleness of rock and stability assessment in hard rock tunneling. Tun Undergr Space Technol, 2003, 18(1): 35 doi: 10.1016/S0886-7798(02)00100-1
      [20]
      Vermeer P A, De Borst R. Non-associated plasticity for soils, concrete and rock. Heron, 1984, 29(3): 1984
      [21]
      趙星光. 巖石剪脹角模型及其在地下工程中的應用[學位論文]. 北京:北京科技大學, 2009

      Zhao X G. Rock Dilatancy Angle Model and Its Application in Underground Engineering [Dissertation]. Beijing: University of Science and Technology Beijing, 2009
      [22]
      李建朋, 高嶺, 母煥勝. 高應力卸荷條件下砂巖擴容特征及其剪脹角函數. 巖土力學, 2019, 40(6):2119 doi: 10.16285/j.rsm.2018.0398

      Li J P, Gao L, Mu H S. Dilatancy characteristics of sandstone and its function of dilatancy angle under high confining pressure and unloading conditions. Rock Soil Mech, 2019, 40(6): 2119 doi: 10.16285/j.rsm.2018.0398
      [23]
      梁明純, 苗勝軍, 蔡美峰, 等. 考慮剪脹特性和峰后形態的巖石損傷本構模型. 巖石力學與工程學報, 2021, 40(12):2392 doi: 10.13722/j.cnki.jrme.2021.0107

      Liang M C, Miao S J, Cai M F, et al. A damage constitutive model of rock with consideration of dilatation and postpeak shape of the stress-strain curve. Chin J Rock Mech Eng, 2021, 40(12): 2392 doi: 10.13722/j.cnki.jrme.2021.0107
      [24]
      趙星光, 蔡明, 蔡美峰. 巖石剪脹角模型與驗證. 巖石力學與工程學報, 2010, 29(5):970

      Zhao X G, Cai M, Cai M F. A rock dilation angle model and its verification. Chin J Rock Mech Eng, 2010, 29(5): 970
      [25]
      謝和平, 彭瑞東, 鞠楊, 等. 巖石破壞的能量分析初探. 巖石力學與工程學報, 2005, 24(15):2603 doi: 10.3321/j.issn:1000-6915.2005.15.001

      Xie H P, Peng R D, Ju Y, et al. On energy analysis of rock failure. Chin J Rock Mech Eng, 2005, 24(15): 2603 doi: 10.3321/j.issn:1000-6915.2005.15.001
      [26]
      Rosenblueth E. Point estimates for probability moments. Proc Natl Acad Sci USA, 1975, 72(10): 3812 doi: 10.1073/pnas.72.10.3812
      [27]
      Christian J T, Baecher G B. Point-estimate method as numerical quadrature. J Geotech Geoenviron Eng, 1999, 125(9): 779 doi: 10.1061/(ASCE)1090-0241(1999)125:9(779)
      [28]
      Schweiger H F, Peschl G M. Reliability analysis in geotechnics with the random set finite element method. Comput Geotech, 2005, 32(6): 422 doi: 10.1016/j.compgeo.2005.07.002
      [29]
      Valley B, Kaiser P, Duff D. Consideration of uncertainty in modelling the behaviour of underground excavations // Proceedings of the Fifth International Seminar on Deep and High Stress Minging. Perth, 2010: 6
      [30]
      肖術, 吳順川, 高永濤, 等. 基于PEM-JFEM方法的節理巖質邊坡穩定性評價. 工程科學學報, 2015, 37(7):844

      Xiao S, Wu S C, Gao Y T, et al. Jointed rock slope stability evaluation based on PEM-JFEM method. Chin J Eng, 2015, 37(7): 844
      [31]
      何正風. MATLAB概率與數理統計分析. 2版. 北京:機械工業出版社, 2012

      He Z F. MATLAB Probability and Mathematical Statistics Analysis. 2nd Ed. Beijing: China Machine Press, 2012
      [32]
      吳成, 張平. 高地應力硬巖洞室開挖破壞區數值模擬方法探討. 水文地質工程地質, 2012, 39(6):35 doi: 10.16030/j.cnki.issn.1000-3665.2012.06.006

      Wu C, Zhang P. Analysis of numerical simulation methods for excavation failure zone of deep underground opening in hard rocks with high geostress. Hydrogeol Eng Geol, 2012, 39(6): 35 doi: 10.16030/j.cnki.issn.1000-3665.2012.06.006
      [33]
      Cai M, Kaiser P K, Uno H, et al. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. Int J Rock Mech Min Sci, 2004, 41(1): 3 doi: 10.1016/S1365-1609(03)00025-X
      [34]
      Rafiei Renani H, Cai M. Forty-year review of the hoek-brown failure criterion for jointed rock masses. Rock Mech Rock Eng, 2022, 55(1): 439 doi: 10.1007/s00603-021-02661-2
      [35]
      苗勝軍, 楊志軍, 龍超, 等. 脆性硬巖CWFS強度準則模型等效塑性參數優化研究. 巖石力學與工程學報, 2013, 32(S1):2600 doi: 10.3969/j.issn.1000-6915.2013.z1.004

      Miao S J, Yang Z J, Long C, et al. Equivalent plastic parameters optimization research on CWFS failure criterion model of brittle hard rock. Chin J Rock Mech Eng, 2013, 32(S1): 2600 doi: 10.3969/j.issn.1000-6915.2013.z1.004
    • 加載中

    Catalog

      通訊作者: 陳斌, bchen63@163.com
      • 1. 

        沈陽化工大學材料科學與工程學院 沈陽 110142

      1. 本站搜索
      2. 百度學術搜索
      3. 萬方數據庫搜索
      4. CNKI搜索

      Figures(9)  / Tables(5)

      Article views (66) PDF downloads(12) Cited by()
      Proportional views
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      中文字幕在线观看